Przejdź do treści

Zderzenia martwych gwiazd rozsiewają ciężkie metale w małych galaktykach

Droga Mleczna

Naukowcy z Caltechu po raz pierwszy odkryli, że łączące się pary gwiazd neutronowych (wypalone jądra gwiazd, które eksplodowały) tworzą większość ciężkich pierwiastków w małych galaktykach karłowatych. Ciężkie pierwiastki, takie jak srebro i złoto, są kluczowe dla formowania się planet, a nawet samego życia. Dzięki badaniu galaktyk karłowatych naukowcy mają nadzieję dowiedzieć się więcej o podstawowych źródłach ciężkich pierwiastków dla całego Wszechświata.

Pochodzenie najcięższych pierwiastków układu okresowego, w tym 95% całego złota na Ziemi, było od dziesięcioleci przedmiotem debat. Obecnie wiadomo, że najcięższe pierwiastki powstają, gdy jąder atomów w gwiazdach przechwytują cząsteczki zwane neutronami. Dla większości starych gwiazd, włącznie z tymi znajdującymi się w galaktykach karłowatych z tego badania, proces zachodzi szybko, i dlatego nazywany jest procesem r, gdzie „r” oznacza „szybki” (ang. rapid).

Istnieją dwa wyróżnione miejsca, w których teoretycznie istnieje proces r. Pierwszym potencjalnym miejscem jest wybuch supernowej, która wytwarza duże pola magnetyczne – magnetorotacyjna supernowa. Drugie to łączące się lub zderzające dwie gwiazdy neutronowe. W sierpniu 2017 roku LIGO oraz inne naziemne teleskopy wykryły jedną z takich kolizji gwiazd neutronowych, które tworzyły najcięższe pierwiastki. Jednakże jedno takie zdarzenie nie mówi astronomom, gdzie większość z nich powstaje w galaktykach.

Aby przyjrzeć się produkcji ciężkich pierwiastków w galaktykach jako całości, naukowcy z Caltechu zbadali kilka pobliskich galaktyk karłowatych za pomocą teleskopu Kecka znajdującego się na Mauna Kea na Hawajach. Podczas gdy Droga Mleczna jest uważana za galaktykę średnich rozmiarów, galaktyki karłowate, które krążą wokół niej, mają około 100 tysięcy razy mniejszą masę gwiazdową niż ona. Naukowcy przyjrzeli się temu, kiedy powstały najcięższe pierwiastki w galaktykach. Supernowe magnetorotacyjne mają tendencję do występowania bardzo wcześnie we Wszechświecie, podczas gdy łączenie się gwiazd neutronowych następuje później.

Wyniki tych badań dostarczają nowych dowodów na to, że dominujące źródła procesu r w galaktykach karłowatych występują na stosunkowo długich skalach czasowych – to znaczy, że zostały stworzone później w historii Wszechświata. To właśnie opóźnienie w produkcji ciężkich pierwiastków identyfikuje zderzenia się gwiazd neutronowych jako ich główne źródło.

Profesor astronomii na Caltechu i współautor tego opracowania, Evan Kirby, wyjaśnia: Badanie to opiera się na koncepcji archeologii galaktycznej, która wykorzystuje pierwiastki obecne w gwiazdach do „wykopania” dowodów historii produkcji pierwiastków w galaktykach. Konkretnie: mierząc stosunek pierwiastków w gwiazdach w różnym wieku, jesteśmy w stanie powiedzieć, kiedy powstały one w galaktyce.

Astronomowie często badają galaktyki karłowate, które są dla nich sposobem na poznanie galaktyk w ogóle. Ponieważ są one małe, mają mniej skomplikowaną historię, które jest łatwiejsza do zrekonstruowania niż w przypadku ich większych odpowiedników.

Opracowanie: Agnieszka Nowak

Więcej:
Collisions of Dead Stars Spray Heavy Elements Throughout Small Galaxies

Źródło: Caltech

Na zdjęciu: Galaktyka karłowata Rzeźbiarz jest jedną z najmniejszych galaktyk wchodzących w skład nowego badania Caltech. Źródło: ESO

Reklama