Przejdź do treści

Gwiazda neutronowa prawie zbyt masywna, aby istnieć

img

Astronomowie korzystający z GBT odkryli najmasywniejszą do tej pory znaną gwiazdę neutronową, szybko wirujący pulsar oddalony o ok. 4600 lat świetlnych od Ziemi. Ten rekordowy obiekt wiruje na krawędzi istnienia, zbliżając się do maksymalnej teoretycznej masy możliwej dla gwiazdy neutronowej.

Gwiazdy neutronowe – zwarte pozostałości masywnych gwiazd, które wybuchły jako supernowe – są najgęstszymi „normalnymi” obiektami w znanym Wszechświecie. (Czarne dziury są gęstsze, ale dalekie od normalności.) Jedna kostka cukru zbudowana z materii gwiazdy neutronowej na Ziemi ważyłaby 100 mln ton, czyli mniej więcej tyle samo, co cała ludzka populacja. Chociaż astronomowie i fizycy badali te obiekty od dziesięcioleci i zachwycali się nimi, pozostaje wiele tajemnic dotyczących natury ich wnętrz: czy zgniecione neutrony stają się „nadciekłe” i płyną swobodnie? Czy rozpadają się na zupę subatomowych kwarków lub innych egzotycznych cząstek? Jaki jest punkt krytyczny, gdy grawitacja wygrywa z materią i tworzy czarną dziurę?

Zespół astronomów korzystający z Green Bank Telescope (GBT) zbliżył nas do znalezienia tych odpowiedzi.

Naukowcy, członkowie NANOGrav Physics Frontiers Center, odkryli, że szybko rotujący pulsar milisekundowy, zwany J0740+6620, jest najmasywniejszą gwiazdą neutronową, jaką kiedykolwiek zmierzono, ma średnicę 30 km i masę 2,17 mas Słońca. Ten pomiar zbliża go do granicy tego, jak masywny i zwarty może stać się pojedynczy obiekt bez zmiażdżenia się do czarnej dziury. Ostatnie prace dotyczące fal grawitacyjnych zaobserwowanych przez LIGO podczas zderzenia się gwiazd neutronowych sugerują, że 2,17 masy Słońca może znajdować się blisko tej granicy.

Gwiazdy neutronowe są tak samo tajemnicze, jak fascynujące. Te obiekty wielkości miasta to w istocie olbrzymie jądra atomowe. Są tak masywne, że ich wnętrza nabierają dziwnych właściwości. Znalezienie maksymalnej masy, na jaką pozwala fizyka i natura, może nas wiele nauczyć o tym niedostępnym królestwie astrofizyki – mówi Thankful Cromartie, absolwent University of Virginia i doktorant Grote Reber w National Radio Astronomy Observatory w Charlottesville w stanie Wirginia.

Pulsary emitują bliźniacze wiązki fal radiowych ze swoich biegunów magnetycznych, które przemierzają przestrzeń kosmiczną w sposób przypominający latarnię morską. Niektóre rotują setki razy na sekundę. Ponieważ pulsary wirują z tak fenomenalną prędkością i regularnością, astronomowie mogą je wykorzystywać jako kosmiczny odpowiednik zegarów atomowych. Tak precyzyjne mierzenie czasu pomaga im badać naturę czasoprzestrzeni, mierzyć masy obiektów gwiazdowych i lepiej rozumieć ogólną teorię względności.

Gdy tykający pulsar przechodzi za swoim towarzyszem białym karłem, występuje subtelne (rzędu 10 milionowych sekundy) opóźnienie czasu nadejścia sygnałów. Zjawisko to znane jest jako „opóźnienie Shapiro”. W istocie, grawitacja białego karła, zgodnie z ogólną teorią względności, nieznacznie zakrzywia otaczającą ją przestrzeń. To zakrzywienie oznacza, że impulsy z rotującej gwiazdy neutronowej muszą podróżować nieco dalej, gdy omijają zakrzywienia czasoprzestrzeni wywołane przez białego karła.

Astronomowie mogą wykorzystać wielkość tego opóźnienia do obliczenia masy białego karła. Gdy znana jest masa jednego z orbitujących ciał, stosunkowo łatwo jest określić masę drugiego.

Więcej:
Most Massive Neutron Star Ever Detected, Almost too Massive to Exist

Źródło: GBO

Reklama