Przejdź do treści

Wyjaśnienie zjawiska łączenia się supermasywnych czarnych dziur

Astronomowie po raz pierwszy stworzyli model promieniowania elektromagnetycznego pochodzącego z dysków akrecyjnych wokół łączących się supermasywnych czarnych dziur. Ten obraz symulacji pokazuje gęstość (po lewej) i funkcję chłodzenia (po prawej) otaczającej je plazmy.

Gdy galaktyki się łączą, supermasywne czarne dziury w ich centrach wirują wokół siebie i w końcu łączą się w jedną czarną dziurę. Jak możemy wytropić te masywne fuzje?

Polowanie na masywne połączenia
Od czasu pierwszego wykrycia fal grawitacyjnych pochodzących od pary czarnych dziur o masie gwiazdowej w 2015 roku, fale grawitacyjne są potężnym narzędziem do badania łączących się czarnych dziur. Jednak wykrycie niezwykle długich fal grawitacyjnych pochodzących od łączących się supermasywnych czarnych dziur – o długościach fali sięgających dziesiątek lat świetlnych! – jest poza naszymi obecnymi możliwościami. Jakich innych metod możemy użyć, aby wykryć te czarne dziury w trakcie łączenia się?

Jedną z możliwości jest śledzenie promieniowania elektromagnetycznego wytwarzanego przez gorącą plazmę, która otacza czarne dziury w miarę ich zbliżania się do siebie. Jeżeli uda nam się wykryć to promieniowanie, będziemy mogli badać supermasywne czarne dziury w miarę ich łączenia się, a także potencjalnie zidentyfikować niewielki ułamek aktywnych jąder galaktyk, które w rzeczywistości są zasilane przez układy podwójne czarnych dziur, a nie przez pojedynczą czarną dziurę – jest to populacja, która nigdy nie została ostatecznie wykryta.

Na pograniczu łączenia
Zespół kierowany przez Eduardo Gutiérreza (Argentyński Instytut Radioastronomii i Rochester Institute of Technology) wykorzystał ogólne relatywistyczne symulacje magnetohydrodynamiki promieniowania elektromagnetycznego generowanego, gdy dwie supermasywne czarne dziury zbliżają się do połączenia.

Aby przewidzieć światło emitowane przez układ, Gutiérrez i jego współpracownicy najpierw wymodelowali ruch rozgrzanej plazmy otaczającej czarne dziury. Gdy czarne dziury krążą wokół siebie, otaczająca je materia tworzy dysk, który otacza czarne dziury, a także minidyski okrążające każdą z tych czarnych dziur. Na wewnętrznej krawędzi większego dysku powstaje gęsty obszar zwany „grudką”, okresowo dostarczając materię do minidysków.

Następnie zespół symulował krętą ścieżkę, jaką fotony pokonywały by przez rozgrzaną plazmę i zakrzywioną czasoprzestrzeń, aby dotrzeć do obserwatora na Ziemi. Powstałe widmo składa się głównie z emisji z dysku otaczającego układ podwójny, minidysków oraz materii łączących większy dysk z minidyskami.

Widzieć podwójne
Gutiérrez i współautorzy pracy odkryli, że promieniowanie pochodzące od łączących się supermasywnych czarnych dziur powinno być wykrywalne, a ponadto istnieją znaczne różnice w emisji z łączących się czarnych dziur i z pojedynczej czarnej dziury. W szczególności, układ podwójny emituje mniej energii niż pojedyncza czarna dziura, a jego emisja osiąga szczyt przy niższej częstotliwości i maleje mniej gwałtownie przy częstotliwościach powyżej szczytu. W przeciwieństwie do pojedynczej czarnej dziury, emisja z układów podwójnych powinna wykazywać zachowanie półokresowe; ponieważ grudka, która dostarcza materię do minidysków, ma lekko eliptyczną orbitę, tempo akrecji – a więc i siła emisji – wzrasta, gdy grudka przechodzi najbliżej minidysków.

Autorzy przewidują, że sygnał z układu podwójnego czarnych dziur o łącznej masie miliarda mas Słońca będzie się zmieniał z okresami ~20 i ~150 dni, podczas gdy emisja z układu podwójnego o masie miliona mas Słońca będzie się zmieniała w krótszych przedziałach czasowych. Wielokrotne obserwacje rentgenowskie powinny pozwolić na wykrycie tej zmienności, określenie, czy przyczyną emisji jest jedna czarna dziura, czy dwie, i dać nam pierwszy w historii wgląd w czarne dziury zmierzające do połączenia.

Opracowanie:
Agnieszka Nowak

Więcej informacji:

Źródło: AAS

Na ilustracji: Astronomowie po raz pierwszy stworzyli model promieniowania elektromagnetycznego pochodzącego z dysków akrecyjnych wokół łączących się supermasywnych czarnych dziur. Ten obraz symulacji pokazuje gęstość (po lewej) i funkcję chłodzenia (po prawej) otaczającej je plazmy. Źródło: Zaadaptowano z Gutiérrez i inni, 2022.

Reklama