URANIA

MIESIĘCZNIK
POLSKIEGO TowARZYSTWA MIŁOŚNIKÓW ASTRONOMII

ROK 1
STYCZEŃ 1979
Nr 1

ZAKŁAD NARODOWY IMIENIA OSSOLIŃSKICH
WYDAWNICTWO POLSKIEJ AKADEMII NAUK
KS MAŁCIN ODJANICKI
DOZOBUT\'T.

OD 1788 R. W SKOMIANCE Z GRODZIEŃSKIEJ,
ZMIERZYNIE W DANYCH ĆWIECIEŃ LEZUJĄC
MAZURY, KEJ MIAŁ BIŚPY ŚMIEJEGO CHARAKTERY.
OBECNIE ZRZECZE JESTO JESTO NA WIOŚCI
WIELSKIEJ OBRAZATEL: ZMIERZYNIE JESTO WE
DZIĘK WIOŚCI RZECZU ŚMIEJEGO DOKTOR 1700-1799.
INDEKS PRZEDMIOTOWY

Astronomia: amatorska w świecie, 169; badania w podczerwieni, 53; osiągnięcia polskich astronómów w 1978 r., 209
Badania kosmiczne: w Polsce, 199, 231
Cywilizacje pozaziemskie: czwarta konferencja CETI, 20; gdzie Oni są?, 373; kopie Słońca w promieniu 25 parseków od niego, 114; nowy program SETI, 147; poszukiwanie, 275, 276; rozmowa z J. S. Szkłowskim, 47; szansa odkrycia sygnału rozumnego, 116; wzrost zainteresowań, 189
Czas: w filozofii, 40
Fotografia astronomiczna: 354; fotografowanie z niecstrą maską, 329
Galaktyki: masa ukryta w sąsiedztwie Słońca, 144; wodór i deuter w okolicach Słońca, 147
Galaktyki: czarne dziury w jądrach g., 338; czy w g. eliptycznych powstają gwiazdy?, 176; ewolucja, 53; klasyfikacja, 368; kwazarzy i młode g., 212; kwazarzy jądrami g. eliptycznych, 115
Gwiazdy: Alfa i Proxima Centauri, 245; Barnarda, 20, 147, 309; ciasne układy podwójne a systemy planetarne, 213; czerwone giganty, 277; HD 93250, 368; kompleksy gwiazdowe, 213; kopie Słońca w promieniu 25 parseków od niego, 114; MWC 349, 338; powstawanie, 15, 214, 338; prędkości radialne, 278; pozostałość po supernowej z roku 1181, 244; R Puppis, 278; typu R CrB, 337; układ podwójny w centrum mgławicy planetarnej NGC 3132, 367
Historia: czy Syriusz B był białym karłem w czasach Ptolemeusza?, 339; 200 lat „Connaissance des Temps”, 280; 250 lat obiektywu achronomicznego, 314; sześciedzięciolecie „Uranii”, 305; wzmianka o supernowej z roku 1054 w rękopisie arabskim, 243
Jowisz: fotometria Amaltei, 211; fotoreportaż z, 266; obłok sodowy Io, 86; pierścień, 275; projekt JOP, 84; promieniowanie radiowe, 373; szron na Kallisto, 87
Komety: 371; gdzie i kiedy najczęściej są odkrywane?, 372; obserwacje Westa (1975n), 119; w pobliżu Ziemi, 247
Kosmologia: 2, 34, 66, 98, 162, 194, 258, 290, 322
Księżyc: czy w roku 1178 na K. upadł meteoryt?, 18; globusy K. w Polsce, 9; krater, 236; losy próbek gruntu, 87, 374; obserwacje całkowitego zaćmienia 16 IX 1978, 56; zaćmienie częściowe 13/14 III 1979, 79; żart primaaprillisowy, 106
Kwazar: a młode galaktyki, 212; jądrami galaktyk eliptycznych?, 115
Mars: jakie rzeki płynęły na?, 369; przyszłe badania, 145; satelity, 142, 203, 371; zagrożenie dla życia na, 342; związki organiczne na, 342
Merkury: nazewnictwo utworów topograficznych, 16
Meteory: krater meteorytowy we Fromborku, 74, obserwacja jasnego bolidu 29 VIII 1978, 182; tunguski, 174, 368

Mgławice planetarne: klasyfikacja, 277; układ podwójny w centrum NGC 3132, 367

Milośnicy astronomii: 169; IV Kongres Międzynarodowej Unii Miłośników Astronomii, 182; kontakty międzynarodowe, 60; międzynarodowy obóz młodzieżowy w: Havelte (Holandia) 1978, 22, Violau (RFN) 1979, 92; wakacje w planetarium, 140; w Paderborn (RFN), 375; zjazd obserwatorów Słońca, 120

Neptun: rotacja, 117; zmiany jasności, 117

Obserwacje miłośnicze: całkowitego zaćmienia Księżyca 16 IX 1978, 56; jasnego bolidu 29 VIII 1978, 182; komety Westa (1975n), 119; pozycyjne Gwiazdy Barnarda, 20; programy obliczeń astronomicznych na kalkulator elektroniczny, 110

Olimpiada Astronomiczna: XXII, 271

Personalia: Banachiewicz Tadeusz, 344; Baranowski Jan, 152; Birkenmajer Ludwik Antoni, 153; Brzostkiewicz Stanisław R., 193; Kasza Jan, 210; Kamieński Michał, 378; Matkiewicz Leopold, 250; Olszaniec: Poczebutt Marcin, 23; Titius Johann Daniel, 282

Planetaria: Frombork, 140

Planetoidy: 300; grupy Apollo, 333; o najkrótszym okresie (Ra-Shalom), 145, 302; satelita Herculiny, 85; w pobliżu Ziemi, 247

Planety: amerykańskie plany eksploracji w latach osiemdziesiątych, 142; Jowisz, 84, 266, 275, 373; Mars, 145, 342, 369; Merkury, 16; Neptun, 117; pierscienie wokół, 211, 274; Pluton, 130; pochodzenie atmosfer planetarnych, 370; Uran, 18, 117, 144, 246, 275; Wenus, 211, 369; wokół Gwiazdy Barnarda, 309

Pluton: 130; satelita, 84

Pulsary: klasyfikacja, 143

Saturn: jedenasty księżyc, 85, rozmiai Iapetusa, 86

Słońce: aktywność S. a biologia, 248; 20 lat radiowej służby S. w Toruniu, 89; ekosfera S., 116; radiowe promieniowanie, 19, 55, 88, 118, 149, 178, 214, 247, 280, 310, 343, 375; rozmiai, 245; średnie miesięczne liczby Wolfa, 19, 54, 88, 118, 149, 177, 215, 247, 279, 310, 343, 374

Sztuczne satelity i statki kosmiczne: COBE, 339; Interkosmos-Kopernik 500, 201; IRAS, 211; Voyager-1, 266

Supernowe: pozostałość po wybuchu, 14

Teleskopy: jak wykonać okulary do narzędzi astronomicznych, 312; przyszłości, 212

Układ Słoneczny: amerykańskie plany eksploracji w latach osiemdziesiątych, 142; czy „zderzy się” z obiektem materii międzygwiazdowej?, 340; ekosfera Słońca, 116; pochodzenie, 370; świadkowie na­rodzin (planetoidy), 300

Uran: pierscienie, 18, 246, 275; rotacja, 117; zmiany w atmosferze?, 144

Wenus: czego nie wiemy o, 369; pierscień wokół W., 211
Wszechświat: ewolucja Kosmosu, 2, 34, 66, 162, 194, 258, 290, 322; pierw­
wsze trzy minuty, 136; projekt satelitarnych badań promieniowa­
nia relikowego, 339; projekt testu kosmologicznego, 52
Zaćmienia Księżyca: częściowe 13/14 III 1979, 79, obserwacje całkowi­
tego 16 IX 1978, 56; w Polsce w latach 1980—1985, 360
Zakrycia: gwiazd przez Księżyca w Polsce w 1979 r., 138; plan obserwa­
cyjny z. gwiazd przez planetoidy, 226; w Polsce w latach 1980—
1985, 360
Ziemia: kratery meteorytowe na, 74, 236; krótkofalowe okna atmosfe­
ryczne, 146
Życie we Wszechświecie: ekosfera Słońca, 116; rozmowa z J. S. Szklows­
skim, 47

INDEKS TYTUŁÓW

Artykuły

Aktualne problemy kosmologii, M. Heller, 98
Astronomia amatorska w świecie, K. Ziolkowski, 169
Badania kosmiczne w Polsce, K. Ziolkowski, I: 199, II: 231
Brzegowe zakrycia gwiazd przez Księżyca w Polsce w 1979 r., M. Zawilski, 138
Czas w filozofii i fizyce, S. Lubertowicz, 40
Częściowe zaćmienie Księżyca 13/14 marca 1979 r., M. Zawilski, 79
XXII Olimpiada Astronomiczna, M. Szczepański, 271
Ewolucja Kosmosu i kosmologii, M. Heller, VI: 2, VII: 5, VIII: 34, IX:
Fotografia w służbie astronomii, S. R. Brzostkiewicz, 354
Fotografowanie z nieostrą maską, T. Kwast, 329
Fotoreportaż z Jowisza, S. R. Brzostkiewicz, 266
Jak powstały pierwsze globusy Księżyca, B. Schlossberger, 19
Kratery na Księżyca i Ziemi, H. Korpiukiewicz, 236
Księżyce Marsa w świetle najnowszych badań, S. R. Brzostkiewicz, 203
Na marginesie sześćdziesięciolecia „Uranii”, L. Zajdler, 305
O planetoidach z grupy Apollo, B. Juchniewicz, 333
O unikalności ziemskiej cywilizacji we Wszechświecie, wywiad z J. S.
Szklowskim, 110
Pierwsze trzy minuty kosmicznej ewolucji, M. Heller, 136
Plan obserwacji zakryć gwiazd przez planetoidy, P. D. Maley, 226
Pochodzenie i rola Księżyca w rozwoju życia i nauki na Ziemi, T. Z.
Dworak, Z. Papirotny, 106
Programy Obliczeń astronomicznych na kalkulator elektroniczny, Z.
Rzepka, 110
Raport o stanie badań krateru meteorytowego we Fromborku, H. Korp­
piukiewicz, 74
Świadkowie narodzin Układu Słonecznego, K. Ziolkowski, 300
Układ Plutona i jego zagadki, S. R. Brzostkiewicz, 130
Wakacje w planetarium, A. Pilski, 140
Zjawiska zaćmieniowe w Polsce w najbliższym sześćdziesięcioleciu (1980—1985),
M. Zawilski, 360

Kalendarzyk Astronomiczny

29, 61, 92, 125, 157, 190, 220, 253, 285, 316, 347, 380
Konferencje i Zjazdy
Czasami najważniejsze jest to, co się nigdy nie wydarzyło — o czwartej konferencji CĘTI, 20
IV Kongres Międzynarodowej Unii Miłośników Astronomii, 182
Międzynarodowy Młodzieżowy Obóz Astronomiczny — Havelte 1978, 22

Kronika
Alfa i Proxima Centauri, 245
Amerykańskie plany eksploracji Układu Słonecznego w latach osiemdziesiątych, 142
Astronomia w podcerwieni, 53
Astronomiczny satelita IRAS, 211
Badania Fobosa i Deimosa, 142
Bolid tunguski, 368
Ciśnienie podwójne a systemy planetarne, 213
Czarne dziury w jądrach galaktyk, 338
Czego nie wiemy o Wenus?, 369
Czerwone giganty tracą masę, 277
Czy Syryusz B był białym karłem w czasach Ptolemeusza?, 339
Czy Układ Słoneczny „zderzy się” z obłokiem materii międzygwiazdowej, 340
Czy w galaktykach eliptycznych powstają gwiazdy?, 176
Czy w roku 1178 na Księżyc upadł meteoryt?, 18
Czyżby rozwiązanie zagadki „tunguskiego meteorytu”? , 174
Efemerydy zakryć gwiazd przez Księżyc dla Polski, 376
Ekosfera Słońca, efekt cieplarniany i wzór Drake’a, 116
Ewolucja galaktyk, 53
Fotometria Amaltei, 211
Gdzie i kiedy najczęściej odkrywane są komety, 372
Gdzie Oni są?, 373
Gwiazda Barnarda, 147
HD 93250 — rekordzistka wśród masywnych gwiazd, 368
Hipotetyczny satelita Herculiny, 85
Historia zmienności R Puppis, 278
Jaki rzeki płynęły na Marsie?, 369
Jedenasty Księżyc Saturna, 85
Jeszcze o MWC 349, 338
Klasyfikacja galaktyk, 368
Klasyfikacja mgławic planetarnych, 277
Klasyfikacja pulsarów, 143
Komety i asteroidy w pobliżu Ziemi, 247
Kompleksy gwiazdowe, 213
Kopie Słońca w promieniu 25 parseków od niego (i nie tylko), 114
Krótkofalowe okna atmosferyczne, 146
Kwazary a młode galaktyki, 212
Kwazary jądrami galaktyk eliptycznych, 115
Losy próbek gruntu księżycowego dostarczonego przez amerykańskie statki Apollo, 87
Masu ukryta w sąsiedztwie Słońca, 144
Masy składników Algola, 53
Merkury panteonem ludzi sztuki, 16
Mgławice pyłowe, globule i protogwiazdy, 15
Misja JOP, 84
Natura i pochodzenie komet, 371
Niezwykła pozostałość po wybuchu supernowej, 14
Nova Cygni 1978, 83
Nowy program SETI, 147
Obłok sodowy Io, 86
Orbitalny test kosmologiczny, 52
Orbyty i pochodzenie Księżyków Marsa, 371
Pierścień planet, 274
Pierścień Urana, 18
Pierścień wokół planetarnie, 211
Pierścień wokół Wenus?, 211
Planetaida o najkrótszym okresie, 145
Planety wokół Gwiazdy Barnarda czyli o pewnej metodzie argumen-
tacji, 309
Pochodzenie atmosfer planetarnych, 370
Pochodzenie Układu Słonecznego, 370
Poszukiwanie cywilizacji pozaziemskich, 275
Powstawanie gwiazd, 338
Powstawanie gwiazd w galaktykach, 214
Pozostałości po supernowej z roku 1181, 244
Prawda o próbkach gruntu księżycowego, 374
Prędkości radialne gwiazd, 278
Promieniowanie radiowe Jowisza, 373
Przyszłe badania Marsa, 145
Rotacja Urana i Neptuna, 117
Rozmiary Iapetusa, 86
Rozmiary Słońca według współczesnych pomiarów, 245
Satelita Plutona, 84
Satelitarne badania promieniowania relikowego, 339
Strumień radiowy Ziemi a możliwości SETI, 276
Supernowe a gwiazdy typu R Korony Północnej, 337
Szanse odkrycia sygnału rozumnego, 116
Szron na Kallisto, 87
Teleskop przyszłości, 212
Układ podwójny w centrum mgławicy planetarnej NGC 3132, 367
Wielkość pierścieni Urana, 246
Wodór i deuter w okolicach Słońca, 147
Wzmianka o supernowej z roku 1054 w rękopisie arabskim, 243
Zagrożenie dla życia na Marsie, 342
Zenit i Errata po 500 latach, 144
Zmiany jasności Neptuna, 117
Zmiany w atmosferze Urana?, 144
Z prac polskich astronomów w 1978 roku, 209
Związki organiczne na Marsie, 342

Kronika Historyczna
25 lat obiektywu achromatycznego, 314
Jan Baranowski (1800—1879), 152
Johann Daniel Titius (1729—1796), 282
Leopold Matkiewicz (1878—1949), 250
Ludwik Antoni Birkenmajer (1855—1929), 153
Michał Kamiński, 1879—1973, 378
Kronika PTMA

IX Ogólnopolski Zjazd Obserwatorów Słońca i VII Sesja Astronomiczna w Dąbrowie Górniczej, 120
Jan Kasza z Rudy Śląskiej (16 VI 1922 — 15 VII 1978), 216
Jubileusz Docenta Doktora Kazimierza Kordylewskiego, 151
Komunikat Oddziału Warszawskiego PTMA, 90
Komunikat w sprawie Sekcji Historii Astronomii, 216
Kurs „ABC astronomii” w Niepołomicach 7 VII — 20 VII 1978, 122
Kurs szkoleniowo-obserwacyjny Wrocław 1978 r., 124
Międzynarodowy Młodzieżowy Obóz Astronomiczny w RFN, 92
Pozdrowienia od miłośników zza oceanu, 60
Szkoleniowy turnus obserwacyjny w Niepołomicach, 123
Z życia Oddziału w Ostrowcu Świętokrzyskim, 148

Nowości Wydawnicze

Astronomia Ogólna, E. Rybka, 58
Astronomia wczerą i sięgnow, I. A. Klimiszyn, 251
Astronom ich królewskich mości, T. Twarogowski, 59
Astronomi nabiajajut, F. J. Zigel, 154
„Big Bang” — nagły wzrost zainteresowań pozaziemskimi cywilizacjami, 189
Dzieje materii przez fizyków odczytane, B. Kuchowicz, J. T. Szymczak, 282
Fizyka klasyczna i jądrowa, praca zbiorowa, 27
Koniec milczenia Wszechświata, W. Bożym, 60
Matematisch-Physikalischer Salon, 184
My z Kosmosu, A. Mostowicz, 186
O atmosferach, R. M. Goody, J. C. G. Walker, 346
Płanieta Mars, W. A. Bronszten, 187
Płaniety odkryty je zanowo, L. W. Ksanfomaliti, 217
Słońce — Ziemia, J. Mergentaler, 217
Wstęp do Fizyki, A. K. Wróblewski, J. A. Zakrzewski, 26

Obserwacje

Aktywność słoneczna a biologia, 248
20 lat radiowej służby Słońca w Toruniu, 89
Działalność Centralnej Sekcji Obserwatorów Słońca w 1978 r., 178
Komunikat Głównej Rady Naukowej PTMA, 90
Komunikat Oddziału Warszawskiego PTMA, 311
Miłośnicy astronomii w Paderborn, 375
Obserwacje całkowitego zaćmienia Księżyca 16 września 1978 r., 56
Obserwacje jasnego bolidu w dniu 29 sierpnia 1978 r., 182
Obserwacje komety Westa (1975n) przeprowadzone w 1976 r., 119
Obserwacje pozycyjne Gwiazdy Barnarda (trzecia seria), 20
Raport o radiowym promieniowaniu Słońca, VIII 1978: 19, IX 1978: 55,

Poradnik Obserwatora
Jak wykonać okulary do narzędzi astronomicznych, 312

INDEKS AUTORÓW

Barski Lech, 123
Borkowski Kazimierz M., 19, 55, 88, 89, 118, 149, 178, 214, 247, 280, 310, 343
Brzostkiewicz Stanisław R., 14, 16, 18, 85, 86, 117, 130, 174, 176, 203, 243, 244, 245, 246, 266, 339, 340, 354, 367, 368, 372
Burda Jacek, 312
Dwojak T. Zbigniew, 26, 27, 58, 106, 154, 185, 187, 217, 251, 282, 346
Fangor Roman, 20
Gawrońska Grażyna, 375
Grela Zygmunt, 90, 311
Heller Michał, 2, 34, 66, 98, 136, 162, 194, 258, 280, 322
Janiczek Roman, 216
Juchniewicz Bożena, 333
Jużyczyński Jarosław, 57
Korpikiewicz Honorata, 60, 74, 182, 184, 236
Kwast Tomasz, 329
K. Z., 209
Lubertowicz Stanisław, 20, 40, 151
L. Z., 60
Malcy Paul D., 226
Mergentaler Jan, 248
Mietelski Jan, 344
Nowacki Maciej, 57
Ochorzyńska Aneta, 22
Odlanicka-Poczobutt Anna, 23
Odlanicki-Poczobutt Michał, 23
Piński Andrzej, 140
Rybka Przemysław, 59, 152, 153, 216, 250, 280, 282, 314
Rzepka Zbigniew, 110, 376
Schlossberger Bolesław, 9, 253
Sitarski G., 29, 61, 92, 125, 157, 190, 220, 253, 285, 316, 347, 380
Skrzat Eugeniusz, 374
Speil Jerzy, 119
Szalikiewicz Zbigniew, 56
Szczeniński Marek, 271
Szkłowski J. S., 47
Szymański Wacław, 19, 54, 88, 118, 120, 149, 177, 178, 215, 247, 279, 310, 343, 374, 375
Ulanowicz Jerzy, 57
Wetnowski Henryk, 19, 55, 88, 118, 149, 178, 214, 247, 280, 310, 343, 375
Włodarczyk Ireneusz, 83
Włodarczyk Krzysztof, 122, 124
Zajdler Ludwik, 87, 144, 156, 184, 189, 230, 255, 305, 319, 351, 378
Zawilski Marek, 56, 79, 138, 360, 376
Ziołkowski Krzysztof, 142, 145, 169, 182, 199, 231, 274, 275, 300

PODZIAŁ STRON NA NUMERY

<table>
<thead>
<tr>
<th>Numer</th>
<th>Strony</th>
<th>Numer</th>
<th>Strony</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1—32</td>
<td>7</td>
<td>193—224</td>
</tr>
<tr>
<td>2</td>
<td>33—64</td>
<td>8</td>
<td>225—256</td>
</tr>
<tr>
<td>3</td>
<td>65—96</td>
<td>9</td>
<td>257—288</td>
</tr>
<tr>
<td>4</td>
<td>97—128</td>
<td>10</td>
<td>289—320</td>
</tr>
<tr>
<td>5</td>
<td>129—160</td>
<td>11</td>
<td>321—352</td>
</tr>
<tr>
<td>6</td>
<td>161—192</td>
<td>12</td>
<td>353—384</td>
</tr>
</tbody>
</table>

ADRESY ODDZIAŁÓW PTMA

15-443 Białystok, ul. 1 Maja 11/4, Zakład Chemii UW (doc. dr Kazimierz Czerępko) tel. 362-57
42-200 Częstochowa, ul. Kościuszki 3/174 (mgr Jan Wieczorek)
41-300 Dąbrowa Górnicza, ul. 3 Maja 4/15 (p. Wacław Szymański)
14-530 Frombork, ul. Elbląska 2 „Wieża Wodna” (p. Jan Pogorzelski)
80-844 Gdańsk, ul. Podwale Staromiejskie 94/4 (doc. dr Andrzej Lisicki)
44-100 Gliwice, Al. Powstańców 3 (p. Zbigniew Szczeszek)
83-300 Grudziądz, ul. Krasickiego 5, Planet. Astronom. tel. 27-94
58-560 Jelenia Góra, pl. Piastowski 18, tel. 512-37 (mgr Alfred Neumann)
41-501 Chorzów, Planetarium WPKiW, skr. poczt. 10, tel. 58-51-49 (dr H. Chrupała)
25-725 Kielce, ul. Sienna 28, tel. 525-29 (p. Andrzej Latkowski)
31-027 Kraków, ul. Solskiego 30/8, tel. 238-92
33-400 Krośno, ul. Nowotki 1 (p. Jan WiniarSKI)
33-300 Nowy Sącz, ul. Śniadeckich 6/10 (p. Wiesław Mochnacki)
10-558 Olsztyn, ul. Żołnierska 13, Obserwat. Astronom. PLK (mgr Tadeusz Rostański)
45-084 Opole, ul. Strzeleckich Bytomskich 1, MDK, (inż. Stefan Czech)
27-400 Ostrowiec Św., os. Słoneczne 8/37 (p. Jerzy Ułanowicz)
61-772 Poznań, Stary Rynek 9/10 (prof. dr Bohdan Kiełczewski)
24-100 Puławy, ul. Krańcowa 17/23, tel. 27-33 (p. Bogdan Szewczyk)
26-607 Radom, ul. Żeromskiego 75 p. 303a (inż. Piotr Janicki)
Szczecin, ul. 9 Maja 17, Dom Kultury „Hetman” (p. Lech Barski)
87-100 Toruń, ul. Kopernika 42, tel. 228-46 (doc. dr H. Iwaniszewski)
00-716 Warszawa, ul. Barzycka 18, CAMK, dyr. Zygmunt Grela
50-082 Wrocław, ul. Piotra Skargi 18a, tel. 347-32 (dr Przemysław Rybka)
65-246 Zielona Góra, ul. Podgórna 50, Zakład Fizyki WSI (doc. dr Napoleon Maron)

ADRESY SEKCJI PTMA

35-438 Bydgoszcz, ul. Wyrzyska 26/30 (inż. Zbigniew Binienda)
62-800 Kalisz, pl. Kilińskiego 11/7 (inż. Janusz Kaźmierowski)
75-330 Kościerzyna, ul. Bałtycka 7/6 (p. Urszula Wojciechowska)
43-392 Międzyrzecz Górne, woj. Bielsko-Biała (Oddz. Kraków) (mgr Tadeusz Klocek) — korespondencje kierować 43-227 Miedzna Grzawa 19 k/Pszczyny
46-040 Ozimek — ZDK Huty „Malapanew” (inż. Feliks Luer) tel. 968 Hut. 169
SPIS TREŚCI

Michał Heller — Ewolucja Kosmosu i kosmologii.

Bolesław Schlossberger — Jak powstały pierwsze globusy Księżyca w Polsce.

Kronika: Niezwykła pozostałość po wybuchu supernowej — Mgławice pyłowe, globule i protogwiazdy — Merkury panteonem ludzi sztuki — Czy w roku 1178 na Księżyc upadł meteoryt? — Pierścienie Urana.

Obserwacje: Komunikat CSOS nr 8/78 — Raport VIII 1978 o radio-wym promieniowaniu Słońca — Obserwacje pozycyjne Gwiazdy Barnarda.

Konferencje i zjazdy: o IV Konferencji CETI — M. M. Obóz w Havelte.

Zeszytem niniejszym, 455 z ogólnego zbioru, rozpoznaczymy 50 rocznik naszego wydawnictwa.

Po kilkumiesięcznej przezwiewie wznowiamy druk cyklu artykułów doc. dr. hab. Michała Hellera na temat ewolucji Kosmosu i kosmologii. Przypominamy, że dotyczą one rozwoju pojęć od chwili wystąpienia Alberta Einsteina w roku 1917.

Z powodu tragicznego zgonu Dra Zbigniewa Klimka przewidywane momenty zakryć gwiazd podamy z opóźnieniem.

Kronika historyczna: Marcin Odłaniecki-Poczobutt

Nowości wydawnicze.

Kalendarzyk astronomiczny.
EWOLUCJA KOSMOSU I KOSMOLOGII

VI. Od teorii do obserwacji

1. Bilans

Sporządzmy krótki przegląd sytuacji. Znane są dwa modele kosmologiczne: statyczny świat Einsteina i pełen paradoksów świat de Sittera. Prace Friedmana pozostają jeszcze niedoce­nione i nieznane, ale wiadomo już, że świat de Sittera nie jest statyczny. Ciągle przybywają wyniki nowych pomiarów prze­sunieć ku czerwieni w widmach galaktyk, jest ich ponad czter­dzięści; są także pierwsze próby wiązania efektu ucieczki ga­ laktyk z niestatyoznym, rozszerzającym się światem de Sitte­ra, ale w gruncie rzeczy wiadomo, że jest to interpretacja „na­ciągana”, świat de Sittera jest pusty i nie ma w nim ucieczki galaktyk, lecz tylko „rozszerzanie” się próżni.

Sytuacja była nabrzmiała problemami, oczekiwana na wiel­ką ideę.

Od czasów odczytu Hubble’a (por. poprzedni rozdział) idea już żyła w szkolnych kajetach, w których Lemaitre miał zwy­czaj równym, starannym pismem notować swoje myśli i wy­konywać wszystkie przeliczenia. Praca Lemaitre’a pt. „Wszech­świat jednorodny o stałej masie, wyjaśniający prędkość radial­ną mgławic pozagalaktycznych” została opublikowana w 47-mym tomie „Roczników Naukowego Towarzystwa Brukselskiego” w 1927 r. [1]

2. Praca Lemaitre’a

Pomysł — jak to zwykle bywa z genialnymi pomysłami — okazał się niezwykle prosty: znaleźć rozwiązanie, które by łą­czyło zalety świata Einsteina (wypełnienie materią) z zaletami świata de Sittera (ekspansja). „Skłania to — pisał Lemaitre — do rozważania wszechświata Einsteina, którego promień mógł­by się zmieniać w dowolny sposób”. Takie sformułowanie za­gadnienia doprowadziło Lemaitre’a do równania Friedmana dla Wszechświata z dodatnią krzywizną przestrzeni. Jednakże Lemaitre nie był zainteresowany w szukaniu wszystkich moż­liwych rozwiązań tego równania, chciał on znaleźć jedynie rozwiązanie „pośrednie” między rozwiązaniem Einsteina i roz­wiązaniem de Sittera. Dobrał więc odpowiednio stałe całkowa­
nia i cel został osiągnięty. Rozwiązanie „pośrednie” opisuje ewolucję Wszechświata w następujący sposób: „w minus nieskończoności” świat jest w einsteinowskim stanie statycznym, z czasem rozpoczyna się ekspansja, „promień Wszechświata” rośnie coraz szybciej, aż wreszcie „w plus nieskończoności” model przechodzi w pusty świat de Sittera. Ekspansja Wszechświata prowadzi do zmniejszania się gęstości materii, dając w granicy gęstość równą zeru; świat staje się pusty. Ten model ewolucji świata był potem intensywnie badany przez angielskiego astronoma i fizyka Sir Arthura Stanleya Eddingtona i zyskał sobie nazwę modelu Eddingtona-Lemaître’a.

W trakcie pracy nad nowym modelem Lemaître nie znalazł osiągnięć Friedmana. Artykuł Lemaître’a z 1927 r. nie jest matematycznie tak rozbudowany jak artykuły jego leningradzkiego poprzednika, odznacza się jednak niezmiernie istotną cechą: Lemaître nie chce tworzyć matematycznych abstrakcji, lecz pragnie przyczynić się do poznania rzeczywistego Wszechświata. Ze swojego modelu Lemaître wypropono formuły opisujące efekt Dopplera i stwierdza, że wyjaśniają one przesunięcia w widmach galaktyk. Otrzymuje następnie ważny wzór, według którego dla galaktyk niezbyt odległych prędkość ucieczki wyliczona z przesunięcia dopplerowskiego w widmie galaktyki winna być wprost proporcjonalna do jej odległości od obserwatora.

Doniosły krok został postawiony. Odejście od panującej przez wieki wizji statycznego Wszechświata stało się faktem dokonanym. Nowa wizja przedstawiająca Wszechświat w stanie nieustannej ewolucji wyrosła ze zmatematyzowanej teorii, która znalazła oparcie w empirycznych faktach.

Praca Lemaître’a pozostała jakiś czas niezauważona. Eddington jako pierwszy docenił jej wielkie znaczenie. On to postawił w angielskiej wersji artykułu Lemaître’a ukazał się w bardziej poczytnym czasopiśmie astronomicznym [2].

3. Spuścizna Lemaître’a

Autor tych słów przez pół roku miał zaszczyt być następcą Lemaître’a na katedrze kosmologii uniwersytetu w Louvain. (Georges Lemaître przez całe swoje naukowe życie był związany z Katolickim Uniwersytetem w Louvain, Belgia; władze Uniwersytetu co kilka lat zapraszają kogoś na katedrę Lemaître’a z cyklem wykładów). Do moich obowiązków, oprócz prowadzenia wykładów i seminariów, należała również praca
nad uporządkowaniem licznych papierów, notatek i listów po­
zostawionych przez Lemaître’a (który zmarł w 1966 roku). Ar­
chiwum Lemaître’a jest prawdziwym skarbem informacji do
historii kosmologii pierwszej połowy dwudziestego wieku. Obok
wielu cennych ciekawostek znalazłem tam, razem z prof.
O. Godartem, czerwoną teczkę tekturową z widniejącą na niej
datą, napisaną ręką Lemaître’a: „1927”. Teczka zawiera notat­
ki dotyczące artykułu opublikowanego potem w Rocznikach
Naukowego Towarzystwa Brukselskiego”, korektę drukarską
(tzw. „szczotkę”) tego artykułu oraz dwie kartki milimetro­
wego papieru, na których Lemaître sporządził wykresy wszystk­
ish rozwiązań równania Friedmana dla stałej dodatniej krzy­
wizny przestrzeni (rys. 1 i 2). Wykres, przedstawiający roz­
wiązanie znane potem jako rozwiązanie Friedmana-Lemaître’a,
jest wyróżniony przerywaną linią. Powszechnie sądzi się, że
Lemaître dowiedział się o istnieniu innych rozwiązań, za po­
średnictwem prac Friedmana, znacznie później (koło roku
1931). Okazuje się, że nie jest to słuszne. Lemaître uzyskał,
niezależnie od Friedmana, wszystkie rozwiązania już w 1927
roku, jednakże w swojej pionierskiej pracy uwzględnił tylko
jedno rozwiązanie — to, które — jego zdaniem — najtrafniej
opisuje rzeczywisty świat. Jeśli ponadto uświadomimy sobie,
że Friedman przedyskutował tylko jakościowo wszystkie moż­
lowe rozwiązania, to nie wykluczone, że na dwóch kartkach
z teczki Lemaître’a po raz pierwszy ludzka ręka narysowała
wykresy ewolucji Wszechświata, które dziś znajdują się w każ­
dym podręczniku kosmologii. Dlatego ilekroć brałem do ręki
te kartki, czyniłem to z prawdziwym wzruszeniem.

VII. Obserwacyjna kosmologia Hubble’a

1. Prawo Hubble’a

Fundamentalna praca Hubble’a jest niewielkim, bo liczącym
zaledwie pięć i pół stronic druku artykułem [3]. Suchy, tech­
niczny styl skutecznie ukrywa przed laikiem sensacyjną treść.
Hubble zestawił pomiary przesunięć ku czerwieni i odległości
dla dwudziestu czterech galaktyk. Jego poprzednie podejrzeńa
potwierdziły się: zależność „przesunięcie ku czerwieni — od­

Rys. 1 i 2 (dwie kartki papieru milimetrowego) — wykresy narysowane
ręką Lemaître’a, przedstawiające ewolucje modeli kosmologicznych ze
stałą dodatnią krzywizną przestrzeni.
ległości” jest liniowa, im galaktyka bardziej odległa tym przesunięcie ku czerwieni w jej widmie większe. Przesunięcie ku czerwieni oznacza prędkość ucieczki (tzw. prędkość radialną) galaktyki, a zatem prędkość ucieczki jest wprost proporcjonalna do odległości galaktyk.

Hubble dysponował ponadto pomiarami przesunięć ku czerwieni dwudziestu dwóch innych galaktyk, dla których pomiary odległości nie były wykonane. Tu Hubble rozumował „w przeciwnym kierunku”: wykorzystał ustaloną liniowo proporcjonalną zależność i znając przesunięcia ku czerwieni wyznaczył odległości.

Liniowa zależność „prędkość ucieczki — odległość” nazywa się obecnie prawem Hubble’ego. Z jednej strony prawo to informuje o wielkoskalowym efekcie często określonym jako rozszerzanie się Wszechświata, z drugiej strony dostarcza wygodnego narzędzia do pomiaru odległości galaktyk. By zmierzyć odległość do jakiejs galaktyki wystarczy zmierzyć jej przesunięcie ku czerwieni; odległość odczytuje się potem niemal natychmiastowo z prawa Hubble’a.

Ale sam Hubble był bardzo ostrożny w wyciąganiu wniosków ze swoich analiz. Przy końcu jego artykułu czytamy:

„Uważam za przedwcześnie szczegółowe dyskutowanie bezpośrednich konsekwencji wynikających z otrzymanego wyniku. ... Jednakże godną uwagi jest możliwość, że zależność między prędkością a odległością może reprezentować efekt de Sittera... i w związku z tym należy podkreślić, że zależność liniowa znaleziona w niniejszej dyskusji jest pierwszym przybliżeniem wynikającym z uwzględnienia ograniczonego zasięgu odległości”. [3]

Zauważmy, że Hubble nie zna ani prac Friedmana, ani pracy Lemaitre’a z 1927 r., w której liniowa zależność między prędkością ucieczki galaktyk a przesunięciem ku czerwieni w ich widmach została otrzymana jako pierwsze przybliżenie, wynikające z analiz rozszerzania się Wszechświata. Hubble pozostaje jeszcze ciągle na etapie modelu de Sittera dostrzegając możliwość wyjaśnienia odkrytego przez siebie prawa jako „efektu de Sittera”.

2. Próbka Wszechświata

Wspomnieliśmy w rozdz. V, że Hubble wyznawał filozofię „ciągłości przyrody”. Jeżeli właściwości przyrody nie zmieniają się skokowo, nieoczekiwanie, to obserwowany zbiór galaktyk można uważać za dobrą „próbkę Wszechświata” i badając tę próbkę można się pokusić o obserwacyjne zrekonstruowanie struktury Wszechświata jako całości. To właśnie — według Hubble'a — jest zadaniem kosmologii obserwacyjnej. Kosmologię obserwacyjną Hubble przeciwstawiał kosmologii teoretycznej, czyli rozważaniom kosmologicznym opartym na ogólnej teorii względności. Do tych ostatnich odnosił się z pewną dozą sceptycyzmu.

Hubble zrozumiał od razu rolę odkrytego przez siebie prawa dla kosmologii obserwacyjnej. Pisał:

„Zależność między prędkością a odległością jest nie tylko potężnym narzędziem badawczym, jest ona również ogoną charakterystyką naszej próbki Wszechświata — jedną z nielicznych charakterystyk jakie znamy. ... Gdyby się udało tę zależność w pełni zinterpretować, dostarczyłaby ona prawdopodobnie istotnego klucza do problemu struktury Wszechświata”. [4]

Ale właśnie jak zinterpretować zjawisko przesunięcia ku czerwieni? Jedynym mechanizmem znanym fizycze, zdolnym wyjaśnić to zjawisko, jest efekt Dopplera. Lecz Hubble — obserwator dostrzegał tu istotne trudności. Jeżeli wszystkie galaktyki uciekają od siebie z prędkościami proporcjonalnymi do wzajemnych odległości, to łatwo wyliczyć, jak dawno temu wszystkie galaktyki znajdowały się, teoretycznie rzecz biorąc, w jednym punkcie. Okres czasu od dziś do tego momentu Hubble nazwał „wiekiem Wszechświata”. Według oszacowań Hubble'a wiek Wszechświata wynosi ok. 2×10^9 lat. Tymczasem badania geologiczne świadczą, że Ziemia istnieje od co najmniej 4×10^9 lat. Wszechświat jest za młody! Hipoteza kosmicznej ekspansji znalazła się w impasie.

Pozostaje druga możliwość: odwołać się do nieznanych mechanizmów powodujących poczerwienienie widm galaktyk. Po raz pierwszy racje kosmologiczne wydawały się domagać reformy ziemskiej fizyki.
3. Na miarę Kopernika

Hubble był świadom doniosłości zagadnienia. Bez wahania przyrównał je do rewolucji Kopernika. Sytuacja jest w pełni analogiczna:

Obecnie sprawa przedstawia się podobnie. Jeżeli przyjmie-my ortodoksyjną, dopplerowską interpretację przesunięcia ku czerwieni, musimy przyjąć hipotezę młodego Wszechświata. Jeżeli Wszechświat jest mody i rozszerza się, to jest również przestrzennie mały, bo w krótkim okresie czasu nie zdążył się rozdać do wielkich rozmiarów. Jeśli chcemy mieć Wszechświat stary i duży, musimy się odwołać do nieznanych praw fizyki:

„Wydaje się, że — podobnie jak w okresie poprzedzają-cym wystąpienie Kopernika — stoi wobec konieczności wyboru pomiędzy małym a skończonym Wszechświatem a Wszechświatem nieograniczenie wielkim plus nowe zasa-dy przyrody”. [5]

Hubble poznał bliżej kosmologię relatywistyczną dzięki współpracy z R. C. Tolmainem, którego wielką zasługą było, między innymi, przedstawienie kosmologii opartej na ogólnej teorii względności w postaci szczególnie nadającej się do po-równań z obserwacjami. Hubble zrozumiał doniosłość nowej teorii, docenił siłę podstawy fizyczne, na których została zbudowana, ale jego instynkt obserwatora wzdrażał się przed przyjęciem zbyt ciasnego Wszechświata.

„Królestwo mgławic” Hubble’a kończy się znamienną wy-powiedzią:

Rozpoczęła się wielka dyskusja, czy Wszechświat rzeczy-wiście się rozszerza.
Pomysły rodzą się niekiedy z nudów. Tak było i wtedy, kiedy zacząłem w roku 1956 pracować w młodej jeszcze Wytwórni Filmów Fabularnych (WFF) we Wrocławiu, w pracowni makiet wydziału budowy dekoracji. Praca szła nieraz ospale, były przestoje dochodzące do trzech miesięcy. Aby dokuczliwą nudę ośmiogodzinnego dnia pracy czymś zapełnić, powstawały różne pomysły; tak na przykład powstała makieta naszej Wytwórni — później okazała się zresztą przydatna do planów rozbudowy Zakładu.

Podobnie było i z wielkimikulami, wykonanymi w makieciarni. W roku 1957 kręcono film pt. „Rozmowy jazzowe”. Kule te zażyczył sobie autor scenariusza dla dekoracji. Przedtem trzeba było jednak wykonać różnych wielkości formy (niecki) — czyli negatywy, najmniejsza z nich miała średnicę 80 cm. Ona to została później wykorzystana do celów „astronomicznych”.

W początku roku 1958 wrocławska prasa podała do wiadomości, że w Wrocławiu powstaną dwie szkoły Tysiąclecia. Do jednej z nich miały być przeniesione dzieci ze starego budynku, naszej podopiecznej szkoły na Biskupinie. Wtedy to zgłosiłem w dyrekcji WFF pomysł zbudowania dużego, plastycznego globusa Ziemi jako dar załogi dla naszych podopiecznych. Dyrekcja udzieliła daleko idącej pomocy przez zakupienie różnych materiałów, ale praca ta trwała dość długo, ponieważ kontynuowano ją tylko podczas przestojów produkcji filmowej, a tych było już coraz mniej. W owej formie o średnicy 80 cm
zacząłem wklejać z tektury dwie półkule, które następnie zmontowałem po osadzeniu łóżysk na oś w jedną całość, po czym jej powierzchnia została nasączona lnianym pokostem i wyszpachlowana. Następnie naniesiona została siatka geograficzna ołówkiem i zarysy lądów oraz zaznaczone rzędne wysokości. W roku 1959 nastąpiło uplastycznienie, pomalowanie w kolorach farbami olejnymi i powtórzenie siatki geograficznej — również farbami olejnymi.

Nagle wiadomość, która zrodziła nowy pomysł. Prasa opublikowała pierwsze, historyczne zdjęcia odwróconej strony Księżyca, wykonane przez radziecki statek kosmiczny Łuna 3. Był to październik 1959 r. Z jednego z czasopism wyciąłem sobie fotografię, na której był zaznaczony równik oraz jeden z południków, który stanowi granicę między widoczną i niewidoczną stroną Księżyca, jak również północny biegun Księżyca (rys. 1).

Przystąpiłem więc do wykonania kuli, w tej samej skali co globus Ziemi — tzn. 1 : 16 000 000; średnica kuli wyniosła 21,8 cm (dla zaokrąglenia — 22 cm). Na kuli naniosłem siatkę selenograficzną, następnie sfotografowałem ją w takiej pozycji, żeby biegun północny, równik i południk odgrywający część niewidoczną od widocznej odpowiadali namieszonym elementom na fotografii wyciętej z czasopisma. Wywołane zdjęcie powiększyłem do tej samej wielkości co zdjęcie z czasopisma (rys. 2). Następnie do swojego zdjęcia przypiąłem kalkę techniczną i tuszem przerysowałem siatkę selenograficzną wraz

Rys. 1. Zdjęcie odwróconej strony Księżyca reprodukowane w nr 12 mies. „Wiedza i Życie” z 1959 r. na str. 748.
z obrysem kuli (rys. 3). Kalkę z naniesioną siatką przyłożyłem do opublikowanego zdjęcia w taki sposób, aby biegun północny, ów graniczny południk i kontury okręgu pokryły się i dopiero wtedy na kalce dorysowałem wszystkie obiekty ze zdję-

Rys. 2. Kula o średnicy 22 cm z naniesioną siatką selenograficzną.

Rys. 3. Kalka z siatką selenograficzną. Linie równika i południów korespondują z odpowiednimi liniami na rys. 1.

cia Księżyca — jak Morze Moskwy, góry Ural, Morze Południa, kratery itd. Uzyskując w ten sposób prowizoryczną mapkę, mogłem już wszystkie dane przenieść na kulę. Dla odtworzenia widocznej strony Księżyca posłużyłem się wtedy mapą z „Obrazów nieba” Jana Gadomskiego.

Wytwórnia Filmów Fabularnych wyraziła zgodę na udostępnienie mi pracowni w godzinach pozasłużbowych, i tak przystałem do wykonania drugiego globusa, posługując się formą (niecką) „jazzową”. Tym razem już dr Rybka dostarczył mi posiadane materiały selenograficzne, często odwiedzał pracownię i na bieżąco dokonywał korekt. Model został pomalowany na kolor stalowy (popiel) w dwóch odcieniach. Jedna trzecia „odwrotnjej” strony Księżyca pozostala gładka, jako jeszcze w tych czasach nierozpoznana. Na tej powierzchni został umieszczony napis:

Globus Księżyca został umieszczony w sali wykładowej siedziby Oddziału w dniu 3 maja 1961 r.

Tak oto powstały trzy pierwsze w Polsce globusy Księżyca. Był to listopad 1961 r.

Z inicjatywy dr. P. Rybki powstał jeszcze jeden globus. Tym razem — sfery niebieskiej. I tym razem Zarząd Oddziału PTMA zwrócił się do WFF. Znowu skorzystałem z niecki „jazzowej”, która po raz trzeci posłużyła do wyklejenia 80 cm kuli. Kierownictwo nad tą pracą objął znów dr P. Rybka. Po wykonaniu w lokalu WFF kuli i statywu wg projektu dr Rybki wszystko zostało przeniesione do siedziby PTMA przy ul. Piotra Skargi i tu, podczas miesięcznego urlopu, nanosiłem wszystkie obiekty z atlasu nieba na kule. Pracę utrudniało to, że wszystkie gwiazdozbiory trzeba było nanieść „odwrotnie” niż na mapie nieba. Dr Rybce chodziło bowiem o to, by sfere niebieską oglądać tak, jak by „sponad wszechświata”, a nie tak,
jak ją widzimy gołym okiem na niebie lub w planetarium. Przypuszczam, że jest to jedyny w Polsce tego rodzaju eksponat.

Globus został w końcu pomalowany w kolorze ciemnogranatowym z czerwonymi granicami gwiazdozbiorów, gwiazdy są białe, Droga Mleczna w odcieniach niebieskich, ekleptyka — żółta.

* * *

Mija oto 20 lat od pierwszych prób skonstruowania globusa Księżyca. Gdy przeglądam zachowane niektóre materiały i szkice z tego okresu, widzę że była to chyba jedyna wówczas droga do przeniesienia z płaskiej mapy Księżyca (raczej — z fotografii) uwidocznionych tam obiektów na kulę. Dziś pracę miałbym znacznie ułatwioną. Wystarczyło by posłużyć się „Poradnikiem miłośnika astronomii” P. G. Kulikowskiego, gdzie oprócz szczegółowej mapy całego Księżyca jak również mapy sfery niebieskiej dołączone są kalki. Takie kalki, jakie ja sporządzalem w grudniu 1959 r., nie mając w tym względzie żadnego doświadczenia i przygotowania. Ze zdumieniem stwierdzam teraz, że niewiele się one różnią od nich.

Zestawiając teraz te miłe dla mnie wspomnienia chciałbym wyrazić również nadzieję, że może zachęcią one miłośników astronomii do podjęcia budowy „miniświata” w postaci podobnych modeli, bądź dla własnego użytku, bądź dla demonstracji i popularyzacji astronomii w naszym kraju. Tym bardziej, że dysponujemy dziś nie tylko dokładnymi mapami Księżyca, ale i innych planet — a nawet satelitów Marsa.

KRONIKA

Niezwykła pozostałość po wybuchu supernowej

Za pomocą radioteleskopu obserwatorium w Cambridge dokonano obserwacji galaktycznej mgławicy radiowej G 127,1 + 0,5, położonej w gwiazdozbiorze Kasjopei (α = 01h05m, δ = +63°). Na podstawie analizy otrzymanych wyników astronom angielski J. L. Caswell wysunął tezę, iż ten rozszerzający się obłok powstał w wyniku wybuchu gwiaz-
dy supernowej. W stwierdzeniu powyższym nie ma niczego nadzwyczajnego, gdyż podobnych pozostałości po wybuchach supernowych znamy w Galaktyce wiele. Jednak w środku mgławicy G 127,1 + 0,5 odkryto radioźródło, którego rozmiary kątowe są mniejsze od 0,15", a które nie wykazuje pulsacji promieniowania. Jest z nim najprawdopodobniej związana gwiazda 19 wielkości gwiazdowej, zidentyfikowana w Palomarskim Atlasie Nieba, lecz jedynie na fotografii wykonanej w świetle czerwonym.

Wysunięta przez Caswella teza może przyczynić się do lepszego poznania natury pozostałości po wybuchach supernowych. Najczęściej się bowiem uważa, że odrzucone podczas wybuchu zewnętrzne warstwy gwiazdy tworzą rozprężającą się mgławicę, a jej obnażone jądro prze kształca się w gwiazdę neutronową, którą możemy obserwować jako pulsar radiowy. Takie właśnie obiekty wykryto w mgławicy Kraba i w gwiazdozbiorze Żagla, gdzie — jak się przypuszcza — też wybuchła supernawa. W pewnych jednak przypadkach — twierdzi Caswell — po wybuchu supernowej pozostaje jedynie punktowe radioźródło bez pulsacji promieniowania i jakie właściwości wykazuje, znajdująca się przypuszczalnie w środku mgławicy G 127,1 + 0,5, gwiazda. Na rzecz tej hipotezy przemawia fakt, że i wcześniej odkryte radioźródła punktowe podejrzewano o związki z pozostałościami po wybuchach supernowych. Jedno z nich położone jest w gwiazdozbiorze Łabędzia (pulsar rentgenowski związany ze znaną mgławicą „koronkową”), drugie zaś w gwiazdozbiorze Cyrkla (pulsar rentgenowski Cir X-1). W obu jednak przypadkach zdaniem Caswella — wybuchy supernowych nastąpiły w układach podwójnych. Przepływ więc materii ze „zwykłych” gwiazd na zdegenerowane ich towarzyszki jest źródłem pulsującego promieniowania rentgenowskiego.

S. R. BRZOSTKIEWICZ

Mgławice pyłowe, globule i protogwiazdy

W artykule będącym zapisem wykładu wygłoszonego przez Barta J. Boka z okazji wręczenia mu medalu im. C. W. Bruce'a, przyznawanego corocznie przez amerykańskie Astronomiczne Towarzystwo Pacyfiku, omówione są zagadnienia związane z procesami powstawania gwiazd w Galaktyce. Ważną rolę odgrywają w nich globule — gęste obłoki pyłowe o formie kulistej, jako że mogą one stanowić zarodki „proto-protogwiazd”. Według ocenautora w Galaktyce może znajdować się około 25 tysięcy dużych globul. Więczność obserwowanych globul (około 200) znajduje się w odległości do 500 parseków od Słońca. Ich rozmiały liniiowe wynoszą 0,15—0,8 parseka, a masy 20—750 mas słonecznych. Gęstość materii wewnątrz globul poczynając od ich środka maleje proporcjonalnie do odwrotności trzeciej potęgi promieni. Zarejestrowano emisję wielu globul w radioliniach cząsteczkowych (H2CO, OH, NH2, CS, CH, HCN, CO). Najwięcej informacji dostarczyły obserwacje na liniach C18O i C13O. Wynika z nich, że temperatura globul wynosi 7—15 K. zaś dywersja prędkości wynosi 0,8—1,2 km/s. B. J. Bok przedeuskutował także proces powstawania gwiazd w Obłokach Magellana, w których nie obserwuje się praktycznie ciemnych mgławic, jednocześnie zaś znajdują się w nich duże ilości wodoru neutralnego (9% masy Wielkiego
Obłoku Magellana i aż 25% masy Małego). Zdaniem Boka procesy formowania się gwiazd w Obłokach Magellana rozpoczęły się stosunkowo niedawno a ich inicjatorem mogła być seria potężnych wybuchów gwiazd supernowych.

Z. PAPROTY

Merkury panteonem ludzi sztuki

Podstawą pracy komisji nazewnictwa Międzynarodowej Unii Astronomicznej była mapa powierzchni Merkurego, zestawiona ze zdjęć otrzymanych w latach 1974—1975 za pomocą sondy „Mariner-10”. Najliczniejszymi utworami na tej mapie są oczywiście kratery, wśród których wyróżniają się ogromne cyrki z podwójnymi lub nawet potrójnymi wałami górami. Do zludzenia przypominają one morza na Księżycu, zwłaszcza zaś „oko byka” — jak planetolodzy nazywają między sobą księżycowe Mare Orientale. Jednak merkuryjnych utworów tego typu nie będziemy nazywać „morzami”, ale „równinami” (po łacinie *planitia*), co chyba znacznie lepiej oddaje ich charakter. Przydzielono im nazwy według położenia na powierzchni planety lub imiona Merkurego w językach różnych narodów. Mamy tam więc między innymi Równinę Upału (Caloris Planitia), Równinę Północną (Borealis Planitia) i Równinę Suisei (Suisei Planitia). Pierwsza z nich znajduje się blisko merkuryjnego równika i faktycznie jest silnie ogrzewana przez wchłaniające się w niebo Słońce, druga — jak sama nazwa wskazuje — leży w pobliżu północnego biegunu planety, trzecia zaś nosi imię Merkurego w języku japońskim.

gólnie zasłużonych w badaniu Merkurego (Antoniadi Dorsum i Schiaparelli Dorsum), a jeden z jasnych kraterów otrzymał nazwisko Gerarda P. Kuiper. Ponadto okazały krater na północnej półkuli planety dostał nazwę Hun Kal, co w języku Majów znaczy dwadzieścia. Przez krater ten przechodzi dwudziesty południk Merkurego i dlatego łatwo go zidentyfikować.

Ostatecznie przyjęto projekt radziecki, żeby kraterów na Merkurego nosiły nazwiska wielkich artystów (pisarzy, malarzy, muzyków). Mamy tam więc między innymi takie oto krater: Kalidasa, Milton, Homer, Murasaki, Cervantes, Holberg, Goya, Rublow, Tycjan, Michał Aniol, Rodin, Mozart, Czajkowski, Bach, Chopin, Puccini. Jednym słowem — powierzchnia Merkurego została przekształcona w panteon ludzi sztuki. Projekt francuski też wykorzystano i to nie tylko dla nazewnictwa utworów topograficznych Merkurego, ale i Marsa. Nazwy statków mają bowiem nosić ciągnące się na odległość wielu kilometrów merkuryjne urwiska tektoniczne (Santa Maria Rupes, Discovery Rupes, Wostok Rupes itd.) i marsjańskie urwiska skalne (Kon-Tiki Rupes, Goya Rupes, Niña Rupes itd.). Ponadto drobne formacje marsjańskie w rejonach lądowisk „Vikingów” otrzymały nazwy miast ziemskich. Żeby jednak już z nazwy wyraźnie wynikało, iż faktycznie chodzi o bardzo małe utwory topograficzne, nadano im nazwy niewielkich miasteczek i osiedli: Czekalin (ZSRR), Tono (Japonia), Locana (Włochy), Quick (Kanada), Cheb (Czechosłowacja) itd. Są to więc nazwy miast z różnych krajów świata i nikt nie może rościć pretensji o to, że o ich wyborze decydowały jakieś nacjonalistyczne względy.

Ten właśnie aspekt skłonił komisję nazewnictwa do przyjęcia zasad, aby utworom topograficznym planet i księżyców nie dawać nazwisk postaci religijnych, działań politycznych i wojskowych, filozofów z ostatnich dwóch stuleci. Jeżeli więc na mapie Marsa znajdujemy nazwę Queen Anne, to nie będzie ona reprezentowała angielskiej królowej, ale znany statek noszący jej nazwisko. To samo odnosi się także do Benjamina Franklina, który na tejże mapie uhonorowany jest nie jako prezydent Stanów Zjednoczonych, lecz jako fizyk i wynalazca pionierów techniki. Jeden zaś z kraterów na powierzchni Merkurego dostał nazwisko Ignacego Paderewskiego, naszego sławnego pianisty i kompozytora — a to, że był on również polskim mężem stanu, nie miało w danej sytuacji żadnego znaczenia.

S. R. BRZOSTKIEWICZ
Czy w roku 1178 na Księżyc upadł meteoryt?

Czy jednak Nininger i Huss faktycznie mają rację? Na pytanie powyższe zapewne nigdy nie uzyskamy zdecydowanej odpowiedzi, chociaż jakieś nikłe światło na to zagadnienie mogą rzucić wyniki analizy próbek gruntu księżycowego, dostarczonych na Ziemię przez radziecką stację automatyczną „Luna-25”. Wylądowała ona 18 sierpnia 1976 roku na Mare Crisium, dokąd właśnie sięgają jasne smugi krateru Giordano Bruno. Pobrane tam próbki zawierają mniej tytanu i potasu niż próbki z innych rejonów Księżyca, co prawdopodobnie związane jest z pochodzeniem kraterów leżących w pobliżu Mare Crisium. Może więc w oparciu o te wyniki uda się planetologom ustalić przybliżony wiek krateru Giordano Brunona?

Pierścienie Urana

OBSEWACJE

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 8/78

Obserwowany w lipcu ub. r. spadek plamotwórczej aktywności Słońca trwał nadal również w miesiącu następnym. Średnia miesięczna względna liczba Wolfa za miesiąc

sierpień 1978 r. R = 59,7

W sierpniu odnotowano powstanie na widocznej tarczy Słońca 24 grup plam słonecznych. Szacunkowo średnia miesięczna powierzchnia plam za

sierpień 1978 r. S = 366.10^{-6} p.p.s.

Dąbrowa Górnicza, 6 września 1978 r. WACŁAW SZYMAŃSKI

Raport VIII 1978 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 3,9 (127 MHz, 31 dni obserwacji) i 101,5 (2800 MHz, 26 dni). Średnia miesięczna wskaźników zmienności: 0,00.

Dnia 4 VIII na częstotliwości 2800 MHz zaobserwowano wybuch typu 3S (prosty) o strumieniu w maksimum 127 su, zaś dnia 11 VIII po południu na częstotliwości 127 MHz wystąpiła słaba burza szumowa.

Toruń, dnia 5 września 1978 r. K. M. BORKOWSKI, H. WEŁNOWSKI
Obserwacje pozycyjne Gwiazdy Barnarda (trzecia seria)

W dniach 30 i 31 sierpnia 1977 r. w Warszawskim Oddziale PTMA przeprowadzono trzecią serię obserwacji pozycyjnych Gwiazdy Barnarda. W obserwacjach udział wzięli: Piotr Grzędzielski, Nikodem Wikliński i Roman Fangor. Wykonano 39 pomiarów, do obliczenia pozycji Gwiazdy Barnarda wykorzystano 37 obserwacji. Uzyskano następujący wynik:

\[\alpha_{1950} = 17^h55^m21^s19 \pm 0^s03 \]
\[\delta_{1950} = +4°38'00,6" \pm 0,"5 \]

Porównując wyniki z pozycjami otrzymanymi w 1975 r. z 2 IX („Urania” nr 2 (1976) stwierdziliśmy następujące przesunięcie się Gwiazdy Barnarda wśród innych gwiazd:

\[\Delta \alpha = -0,10 \pm 0,05 \]
\[\Delta \delta = +20,4" \pm 0,"6 \]

Na podstawie tych danych otrzymaliśmy ruch roczny oraz kąt pozycyjny Gwiazdy Barnarda:

\[\mu = 10,"2 \pm 0,"3 \]
\[\Theta = 355,8^\circ \pm 2,2^\circ \]

Wartości te dobrze zgadzają się z danymi „katalogowymi”, podanymi w „Poradniku Miłośnika Astronomii” Kulikowskiego (W-wa, 1976, str. 447):

\[\mu = 10,"31 \]
\[\Theta = 356^\circ \]

Uzyskane wyniki potwierdzają możliwość otrzymywania stosunkowo dokładnych pozycji, korzystając z mikrometrów pierścieniowego i krzyżowego, oraz dobrze zorganizowanej służby czasu.

ROMAN FANGOR

KONFERENCJE I ZJAZDY

Czasami najważniejsze jest to, co się nigdy nie wydarzyło 1 — o czwartej Konferencji CETI

Czytelnik zapyta — co się nie wydarzyło — Konferencja? Nie, Konferencja się wydarzyła 2) w dniu 15 kwietnia 1978 roku w Katowicach w Dużej Sali Auditoryjnej Uniwersytetu Śląskiego i zorganizowana była — jak zwykle — staraniem Śląskiego Oddziału Wojewódzkiego Polskiego Towarzystwa Astronomicznego i Polskiego Towarzystwa Fizycznego — Oddział przy Uniwersytecie Śląskim; obecnych było — tak jak na poprzednich konferencjach około 200 osób.

Ale nie wydarzyło się dotychczas, aby Ziemiań nie nawiązał kontakt fizyczny z przedstawicielami innych cywilizacji naukowo-technicznych — i to jest właśnie najważniejsze. A szkoda, bo tyle już wysiłku włożono w nawiązanie tego kontaktu i w Kraju i za granicą. Były i są co prawda kontakty telepatyczne — ale tych jakoś nie chce uznać oficjalna nauka.

1) Tytuł zaczerpnięty z artykułu na zupełnie inny temat wydrukowanego w „Magazynie” niedzielnym „Słowa Ludu” w Kielcach. Nazwiska Autora — nie pamiętam. Przepraszam.

2) Słowa „wydarzyć się” — używam w znaczeniu literackim np. „coś się stało”, a nie potocznym np. „niewydarzony Grześ”, „niewydarzony chłob".
Na program konferencji złożyło się tym razem aż osiem wykładów:
— Prof. dr Vlastimil Liebl — Mikrobiologiczny Ustav ČSAV Praha — The Problem of the Origin of Life on the Earth and in the Universe (experimental approaches),
— Doc. dr hab. Zdzisław Ilczuk — UMCS Lublin — Kosmiczne załążki życia,
— Dr Olgierd Wołczek — WIML Warszawa — Problemy pozaziemskiego pochodzenia życia,
— Mgr Zbigniew Sołtys — Kraków — Biologiczne i socjologiczne aspekty powstania cywilizacji Ziemi, a problem CETI,
— Prof. dr hab. Mieczysław Subotowicz — UMCS Lublin — O łączności międzygwiazdowej CETI przy pomocy radioteleskopów satelitarnych,
— Mgr inż. Jerzy Usowicz — Uniw. im. Mikołaja Kopernika Toruń — Problemy analizy spektralnej sygnałów SETI,
— Mgr inż. Zbigniew Paprotny — PTA Katowice — Skala radiowych nasłuchów SETI,
— Dr T. Zbigniew Dworak — IMGW Kraków i Komisja Astronomii Polskiego Tow. Astronautycznego — O nieistnieniu cywilizacji kosmicznych,
— Prof. dr Vlastimil Liebl z Pragi — wykład wygłosił po czesku. Był on chyba najbardziej zrozumiały ze wszystkich wykładów, bo mówił o doświadczalnych sposobach badania początków życia na Ziemi i we Wszechświecie. Duża ilość prostych wzorów i przezrocza uzupełniła słowo, chociaż nie polskie — jednak nam bliskie. Był to rzeczywiście dobry wykład.
— Profesor Subotowicz — jak zwykle błyskotliwie opowiedział o swych projektach umieszczenia radioteleskopów na satelitach orbitalnych, ilustrując — przyjemny zresztą — wykład rysunkami i wzorami.
— Doktor Dworak był tym, który przy końcu konferencji wylał przyścienny kubek zimnej wody na rozpalone głowy CETIologów. Krytycznie omówił problem możliwości istnienia cywilizacji rozumnych we Wszechświecie i stwierdził, że w nie raczej nie wierzy. To był rzeczywiście bardzo potrzebny wykład.
— Pozostałe pięć wykładów — było dla konserwów CETIologii; nieraz bardzo dobre treści zginęły w słabej formie podania ustnego. Ale znawcy problemu mogli z nich wyłowić wiele rzeczy interesujących. A zresztą odsyłam Czytelników do Materiałów z Konferencji 3, jak zwykle starannie wypisanych przez Organizatorów.

W sumie — konferencja była ciekawa, mimo że czwarta — na temat, który będąc na świecie badanym od lat — nie przynosi spodziewanych rezultatów, takich, jak pragnęły ludzie, ciągle spragnieni sensacji. Ma też ten problem odwrotną stronę — aspekty filozoficzne i humanistyczne 4. Ale o tym na Konferencji nie było mowy; a szkoda.

Problematyka CETI czy SETI cieszy się także dużym zainteresowaniem pośród Członków Polskiego Towarzystwa Miłośników Astronomii,

3) IV Konferencja CETI — „Możliwości występowania życia i cywilizacji poza Ziemią oraz nawiązania z nimi łączności” PTA i PTF, Katowice 15. 4. 1978. Streszczenia referatów — cz. I — biologiczna, str. 10; cz. II — techniczna, str. 13; Cena łączna 50,00 zł. Do nabycia w PTA — Katowice.
4) Stanisław Lubertowicz — Problem porozumienia się z pozaziemskimi cywilizacjami (w:) „Urania” XLVII, Nr 5, maj 1978, str. 130—142.

STANISŁAW LUBERTOWICZ

Międzynarodowy Młodzieżowy Obóz Astronomiczny — Havelte 1978

Co roku podczas wakacji odbywa się na świecie kilka międzynarodowych spotkań młodych miłośników astronomii. Jednym z trzech tego rodzajnych było spotkanie w małej miejscowości holenderskiej — Havelte.

W marcowym numerze „Uranii” przeczytałem notatkę zapowiadającą ten obóz. Bardzo chciałam znaleźć się w Havelte i chyba nikt nie może sobie wyobrazić mojej radości, kiedy dowiedziałam się, że zostałam wciągnięta na listę uczestników Obozu.

24 lipca ok. 21.30 dotarłam do „Volkshogeschool Overcinge” w Havelte. Pierwsze spotkanie z miejscem, gdzie miałam spędzić trzy tygodnie, pozostanie mi na zawsze w pamięci. Mieszkalismy w nowym budynku — „Eursinge” — w pokoju dwuosobowym. Zostaśmy rozmieszczeni tak, że każdy mieszkał z Anglikiem lub Amerykaninem, a to w celu lepszego opanowania angielskiego. Ja mieszkałam razem z Kanadyjką.

Zajęcia poszczególnych sekcji, do których nas przydzielono, odbywały się w „Overcinge”, w budynku oddalonym od naszego miejsca zamieszkania o ok. 100 metrów. Jest to stary, prawie zabytkowy dom, którego wnętrze zostało nowocześnie wyposażone i dostosowane do potrzeb odbywających się tu regularnie różnego rodzaju kursów. Wszyscy uczestnicy obozu (48 osób) zostali podzielone na sześć roboczych sekcji:

1. General Group — grupa zajmująca się astronomią ogólną,
2. Meteors Group — budowa i ruchy meteorów,
3. Astro-photography — astrofotografia,
4. Astrophysics — astrofizyka,
5. Variable stars — gwiazdy zmienne,

Powstała jeszcze siódma grupa — której działalność rozpoczęła się dopiero po zakończeniu obozu. Jest to grupa licząca ok. 20 osób i poszukująca gwiazdy nowej. Każda z wymienionych sekcji miała codziennie ok. 4 godzin zajęć teoretycznych. W nocy, jeżeli była odpowiednia pogoda, przeprowadzaliśmy obserwacje. O grupie zajmującej się zagadnieniami związanymi z naszym systemem planetarnym mogę powiedzieć najwięcej, ponieważ byłem członkiem właśnie tej grupy. Opracowaliśmy kilka tematów i przeprowadziliśmy ciekawe obserwacje, m. in. Słońca i Wenus. Każdy z nas otrzymał ćwiczenie, które po wykonaniu należało przedstawić wraz z wynikami na jednym ze spotkań. Wykładowcami i opiekunami sekcji byli studenci astronomii, którzy stawali się, by każdy wszystko dokładnie zrozumiał.

wszystkich grup, w których zostały zamieszczone tematy poruszone podczas zajęć każdej sekcji w czasie całego obozu.

Oprócz zajęć programowych, poświęconych astronomii, mieliśmy również trochę wolnego czasu, który wypełnialiśmy różnymi rozrywka­mi. Podczas całego obozu odbywały się rozgrywki sportowe, m. in. siatkówka, tenis stołowy, szachy. Objeżdżaliśmy sporo filmów o różnorodnej tematyce. Kilkanaście wieczorów poświęciliśmy na tzw. „D.I.Y.” — program własny. Osoby posiadające przezroczne ze swojego kraju mogły przedstawić je tego wieczoru w największjej sali — „big barn”. Tematem prawie wszystkich programów własnych była astronomia kraju, z którego pochodzili przedstawiający.

„Big barn” była centralnym pomieszczeniem na obozie. Tu odbywały się każdego wieczoru spotkania wszystkich mieszkańców „V.H.S. Overcinge”, na których przedstawiciele wszystkich sekcji składali raporty o ich działalności. Również tutaj odbywały się najlepsze obozowe zabawy, do których należała m. in. „beam game” — gra polegająca na przeniesieniu na drugą stronę „rzeki” (prze­strzeń między dwoma stołami — ok. 10 metrów) przy pomocy dwóch różnej wielkości belek — skarbu, którym był ciężki klock drewna.

W wolnym czasie również zwiedzaliśmy. Byliśmy w Westerbork, gdzie na przestrzeni około 1,5 km stoi 14 radioteleskopów o średnicy 25 m. Zobaczyłem obserwatorium astronomiczne w Roden z teleskopem o średnicy 60 cm oraz obserwatorium w Utrecht, gdzie zamierzaliśmy wykonać obserwacje Słońca, ale ze względu na złą pogodę mogliśmy jedynie podziwiać wspaniałe przyrządy do obserwacji naszej Gwiazdy. Odwiedziłam także stolicę Holandii — Amsterdam.

Coconcząc chciałabym życzyć każdemu młodemu miłośnikowi astronomii takiego właśnie sposobu poznawania tej pięknej nauki.

ANETA OBORZYŃSKA
66-200 Świbodzin, Os. Widok 5c, m. 15

KRONIKA HISTORYCZNA

W 250 rocznicę urodzin Marcina Odlanickiego-Poczobutta (1728—1810)

W związku z 250 rocznicę urodzin Marcina Odlanickiego-Poczobutta — doktora filozofii i teologii, matematyka i astronoma miary światowej, długoletniego profesora i rektora Szkoły Głównej Wielkiego Księstwa Litewskiego — należałyby przypomnieć jego osiągnięcia i zasługi w działalności naukowej, dydaktycznej i organizacyjnej.

Marcin Poczobutt urodził się 30 października 1728 roku w Słomiance w powiecie grodzieńskim. Był synem Kazimierza — obożnego grodzieńskiego i Heleny z Hlebowiczów. W wieku lat dziesięciu oddany został do szkół jezuickich w Grodnie, które kończył w roku 1745, i mając 17 lat wstąpił do zakonu jezuitów w Wilnie do studia
w zakresie matematyki i greki (u J. Stoplinga). Wskutek wybuchu wojny 7-letniej powraca w 1756 roku do Wilna, gdzie wykłada na Uniwersytecie grekę i odbywa równocześnie studia teologiczne uzyskując w 1761 roku doktorat teologii.

W tym samym roku zostaje wysłany przez fundację księcia Michała Czartoryskiego, Kanclerza Wielkiego Litewskiego, do Niemiec, Włoch i Francji na studia matematyczno-fizyczne. Przez dwa lata pozostaje w Marsylii, gdzie u księdza jezuity E. Pężenasa — hydrograфа królewskiego i dyrektora miejscowego obserwatorium, pogłębia swą wiedzę w zakresie astronomii.

O okresie studiów Marcina Odlanickiego-Poczobutta w obserwatorium marsylińskim tak pisze Jan Śniadecki:

„Pod najpiękniejszym niebem wspaniały widok świata, uwaga ogromnych dzieł przyrody toczących się w przepaściach czasu w miejsca, które człowiek odważał się zgłębiać i potrafi wymierzać, okazując potęgę swoego pojęcia...-, te wszystkie dźwięki stworzenia i używane nie mogły nie zachwycić i nie przywiązać młodego Poczobutta umysłu, obdarzonego dzielnością a objętego potrzebą myślenia”.

Po studiach w Marsylii poświęcił się całkowicie astronomii, która stała się, jak pisze Jan Śniadecki, „najulubieńszym całego potem życia zatrudnieniem” Marcina Odlanickiego-Poczobutta.

Kontynuuje on swe prace astronomiczne w obserwatorium w Awinionie, gdzie obserwuje wielkie zaćmienie Słońca, które przypadło na dzień 1 kwietnia 1764 r. W tym samym roku wraca do Wilna, gdzie podejmuje wykłady z matematyki i astronomii na Uniwersytecie oraz przystępuje do organizowania obserwatorium astronomicznego jako jego współtwórca po T. Żebrowskim. W roku następnym wyposażenie obserwatorium powiększa się o sekstans Ganiveta o 6 stopach promienia, który służył m. in. do wyznaczania szerokości i długości geograficznej Wilna w roku 1788. Korzystając z zapisu Elżbiety z Ogińskich Puzyniny, kasztelanowej mścisławskiej, sprowadził nowe przyrządy i rozpoczął długą serię obserwacji astronomicznych.

W uznaniu osiągnięć naukowych i zasług otrzymuje od króla Stanisława Augusta Poniatowskiego tytuł astronoma królewskiego. W 1769 roku zostaje mianowany członkiem Królewskiego Towarzystwa Nauk w Londynie (Royal Society).

Zainstalowanie zakupionych w Anglii przyrządów astronomicznych dla Wilna wymagało przebudowy zakładu. Obserwatorium otrzymało piękną szatę zewnętrzną z napisem: Hinc itur ad astra (Tędy idzie się do gwiazd).

W 1773 r., po rozwiązaniu zakonu jezuickiego, Marcin Odlanicki-Poczobutt, jak pisze Jan Śniadecki; „nie dał się jękiom zakonnej społeczności od swych prac ani oderwać, ani roztańczyć”. Kontynuował prace naukowe i ogłaszał drukiem liczne swe obserwacje własnym kosztem. Zasługi te uczcił w 1775 roku król Stanisław August wybiciem złotego medalu z popiersiem Marcina Poczobutta.

Po powołaniu Komisji Edukacji Narodowej w 1773 roku zajął się organizowaniem i reformą szkolnictwa wileńskiego. Wysłany w 1777 r.
do Anglii J. Strzelecki — współpracownik Poczobutta — zakupuje „wielki ośm stóp angielskich promieni murowany kwadrans z wielką południkową lunetą na 6 stóp długości, o troistym szkle obiektywu, z czterema calami otworu”.Ówczesnie najlepszy ten instrument umożliwił obserwacje w dogodnych warunkach.

Rys. 1. Obserwatorium astronomiczne Marcina Odlanickiego-Poczobutta w Wilnie (wg rysunku F. Ruszczyca).

Kolejnym wyróżnieniem było zaproszenie Marcina Poczobutta w 1778 roku na członka Akademii Umiejętności w Paryżu. Od roku 1780 sprawuje przez 19 lat funkcję rektora Uniwersytetu Wileńskiego. W okresie tym brał czynny udział w pracach Komisji Edukacji Narodowej, m. in. współpracował w Warszawie z Kołłątajem w opracowywaniu prawdawstwa szkolnego. W 1793 r. wspólnie z Janem Śniadeckim występował na sejmie grodzieńskim w obronie funduszów edukacyjnych. W 1785 r. nadany został order Orla Białego — najwyższe polskie odznaczenie.

5 września 1793 r. było całkowite zacmienie Słońca. Poczobutt przeprowadza obserwacje w Augustowie w obecności króla Stanisława Augusta. Owcześnie obserwacje astronomiczne Poczobutta umożliwiły dokładne określenie współrzędnych geograficznych Grodna i poprawienie omyłki w poprzednio ustalonej długości geograficznej Wilna.
W 1804 r. Marcin Odlanicki-Poczobutt zostaje członkiem Narodowego Instytutu w Paryżu, którego prezesem był wówczas słynny fizyk Carnot.

Postępująca choroba skłania Poczobutta do przekazania urzędu rektora. Oddaje także w 1807 roku prowadzenie obserwatorium J. Śniadeckiego i przenosi się do klasztoru w Dyneburgu, gdzie w dniu 8 lutego 1810 r. umiera mając 82 lata.

Dziedziniec uniwersytecki, przy którym znajduje się obserwatorium wileńskie, nazwany został dziedzińcem Poczobutta i imię jego nosi po dzień dzisiejszy. Zachowała się również tablica pamiątkowa na tym dziedzińcu (patrz fotografia na okładce nin. zeszytu).

Adam Mickiewicz poświęcił w „Panu Tadeuszu” Marcinowi Odlanickiemu-Poczobuttowi następujące rymy:

Ksiądz Poczobutt człek sławny był obserwatorem
I całej Akademii na ten czas rektorem,
Chociaż później katedrę i teleskop rzucił
I do cichej celi swej powrócił
I tam umarł przykładnie...

W roku 1960 w 150 rocznicę śmierci Marcina Odlanickiego-Poczobutta, prof. Władysław Dziewulski, były dyrektor Obserwatorium Wileńskiego, a wówczas dyrektor Obserwatorium Toruńskiego, napisał w „Uranii” (nr 3, str. 88):

„Po długiej przerwie w dziejach astronomii polskiej wypłynęła w drugiej połowie 18 wieku wielka jasna postać Poczobutta, odnowicieła astronomii polskiej, którego pamięci składamy hołd głęboki”.

MICHAŁ ODLANICKI-POCZOBUTT
ANNA ODLANICKA-POCZOBUTT

NOWOŚCI WYDAWNICZE

Andrzej Kajetan Wróblewski, Janusz Andrzej Zakrzewski, Wstęp do Fizyki, tom 1, Państwowe Wydawnictwo Naukowe, Warszawa 1976, stron 584, nakład 30280 egz., I rzut 5280 egz., cena zł 100,—.

Nie jest moim zamiarem pisanie recenzji tego niezwykłego podręcznika akademickiego przełamującego tradycyjny schematyzm wykładów i naukczenia fizyki, jako że powierzchowną oceny wyrażać nie chcę, a do wystawienia wnikliwej opinii nie czuję się uprawniony. Pragę jedynie zwrócić uwagę miłośników astronomii na tę jakże ceną pozycję Państwowego Wydawnictwa Naukowego, a to z dwóch co najmniej powodów. Po pierwsze ze względu na jednego z Autorów — profesora fizyki Uniwersytetu Warszawskiego Andrzej Kajetana Wróblewskiego — któ-
ry w latach 1959—1964 był redaktorem naczelnym „Uranii”, a ponadto sam zajmował się popularyzacją astronomii; m. in. napisał, wydaną w „Bibliotece Problemów” PWN, książkę „Z tajemnic Marsa” (Warszawa 1958). Po drugie — ze względu na treści astronomiczne zawarte w przedstawionym podręczniku. Autorzy nader często przywołują na łamach swojego podręcznika przykłady zjawisk astronomicznych, ilustrujących procesy i oddziaływania fizyczne, podkreślając tym samym jedność praw fizycznych we Wszechświecie.

Zapewne dla niektórych miłośników „Wstęp do Fizyki” może się wydawać zbyt trudną lekturą. Radzę jednak nie rezygnować z zaznajomienia się z nią, bowiem — jak piszą w Przedmowie Autorzy — „Naszym celem jest nie tylko nauczenie pewnych faktów i praw, lecz także tego, co w fizyce najcenniejsze: fizycznego sposobu myślenia i spojrzenia na świat, fizycznych metod badawczych, entuzjazmu, optymizmu a zarazem sceptyzmu fizyków”.

T. ZBIGNIEW DWORAK

Fizyka klasyczna i jądrowa, Państwowe Wydawnictwo Naukowe, „Biblioteka Problemów”, Warszawa 1978, z rosyjskiego przełożył Stanisław Dymus, stron 222, nakład 6000 egz., cena zł 32,—.

Tom dwieście czterdziesty „Biblioteki Problemów” — która zyskała sobie powszechne uznanie Czytelników, czego dowodem jest szybkie znikanie kolejnych pozycji wydawniczych — poświęconych niemal zasadniczym zagadnieniom współczesnej fizyki, astronomii i kosmologii. Właśnie ze względu na treści astronomiczne i kosmologiczne — rozpatrywane w aspekcie fizyki — należy zwrócić uwagę miłośników astronomii na tę nową, cenną pozycję „Biblioteki Problemów”. Wypada bowiem raz jeszcze podkreślić, że nowoczesna astronomia to nie tylko obserwacje położen i ruchów obiektów na sferze niebieskiej (a już najmniej podziwianie gwiaździstego nieba), nie tylko pomiar jasności wiodomej różnych obiektów, lecz również dogłębień studia teoretyczne (w tym konstruowanie modeli matematycznych przy pomocy maszyn cyfrowych) nad przyrodą, zachowaniem się, pochodzeniem i ewolucją wszelkich ciał, jakie możemy zauważyć w Wszechświecie jako całości. W tym sensie astronomia i kosmologia związane są ściśle z innymi naukami matematyczno-fizycznymi tworząc często nierozróżnialny splot i tym też sensie odczytywać należy przedstawianą pozycję.

Książka jest zbiorem sześciu artykułów popularnonaukowych napisanych przez znanych uczonych radzieckich. Otwiera ją artykuł przeglądowy W. L. Ginzburga „Współczesna astrofizyka”, w którym autor omawia nowe metody badań w astronomii, jak to: radioastronomiczne; astronomii optycznej opartej na wykorzystywaniu sztucznych satelitów i rakiet; astronomii rentgenowskiej i gamma; śledzenia pierwotnego promieniowania kosmicznego; bezpośrednie metody eksploracji za pomocą rakiet i sond kosmicznych; a także metody astronomii neutronowej stawiającej pierwsze kroki. Następnie autor przechodzi do przedstawiania nowych rezultatów badań astronomicznych zwracając szczególną uwagę na astrofizykę promieni kosmicznych i gwiazdy neutronowe — wreszcie przedstawia podstawowe problemy współczesnej astrofizyki, których wylicza trzy, a mianowicie: problem kosmologiczny dotyczący budowy i ewolucji całego Kosmosu; problem przyrody i mechanizmu powstawania radiogalaktyk, kwazarów i jąder galaktycznych;
problem istnienia cywilizacji pozaziemskich i nawiązania z nimi kontaktu (!). Już chociażby dla tego jednego artykułu warto sięgnąć po przedstawianą książkę i przekonać się, że i następne artykuły są równie interesujące i również odnoszące się (po części) do zagadnień astronomiczno-kosmicznych. Związana artykuły W. L. Bragińskiego i W. N. Rudenki „Powszechne ciężenie i fale grawitacyjne” oraz W. A. Ugarowa „Zasada względności i szczególna teoria względności” zawierają treści jawnie astronomiczne, jako że oddziaływania grawitacyjne badać można śledząc ruchy ciał niebieskich, a fale grawitacyjne odgrywają się można od masywnych ciał kosmicznych, a efekty relatywistyczne także najlepiej przejawiają się, mówiąc w uproszczeniu, w Kosmosie. Artykuł Ugarowa nie ogranicza się do opisywania zjawisk w makrokosmosie, lecz porusza również problemy mikrokosmosu będąc niejako wprowadzeniem do następnego artykułu — „Ciężki elektron” W. B. Bieresteckiego. I w tym artykule autor omawiając cząstki elementarne odwołuje się do astronomii: „Na początku był elektron i proton. (...) W sensie kosmologicznym — Wszechświat w początkowej fazie swego rozwoju składał się z protonów i elektronów (takie są nasze dzisiejsze wyobrażenia)”. Otoż bez zrozumienia całej złożoności problemu fizyki cząstek elementarnych nie sposób jest zarazem zrozumieć zjawiska zachodzące na najwczesniejszych etapach rozwoju Wszechświata, kiedy był on tylko Yelem, a poszczególne „ery” liczyły zaledwie ułamki sekundy!

Kolejny artykuł — „Mechanizm reakcji jądrowych” I. C. Szapiro — należy koniecznie przeczytać, jeżeli chce się mieć wyobrażenie o procesach zachodzących we wnętrzu Słońca i gwiazd. Z tematyką tego artykułu łączy się ostatni w cyklu artykuł M. C. Rabinowicza „Kontrolowana synteza termojądrowa” przechodzący już do zagadnień — rzecz by mogła — czysto utylitarnych: zapewnienia ludzkości na milionolecie dopływu energii niezbędnej dla postępu cywilizacji. Uzyskanie kontrolowanej syntezy termojądrowej sprawia — jak dotąd — kłopot uczonym i inżynierom; po początkowym entuzjazmie zapanował powszechny sceptycyzm i dopiero w ostatnich latach pojawiła się możliwość rychłego dotarcia do kresu wstępnych prac badawczych, co wcale jeszcze nie oznacza, że już w najbliższych latach uda nam się pokryć Ziemię tanimi i wydajnymi elektrowniami termojądrowymi.

W rozwiązywaniu problemów kontrolowanej reakcji termojądrowej pomocna jest astrofizyka — tak teoretyczna jak i obserwacyjna (a zwłaszcza badania ciasnych układów podwójnych). Znalazło to nawet wyraz w nazwie stellarator — jaką określono jeden z typów układów toroidalnych utrzymujących w pułapce magnetycznej gorącą plazmę. Nazwę tę nadał urządzeniu znany astrofizyk L. Spitzer, który odkrył podobny efekt (zamykania plazmy w toroidalnej powierzchni magnetycznej za pomocą prądów płynących w przewodnikach znajdujących się na zewnątrz obszaru ograniczonego przez tę powierzchnię) podczas obserwacji gwiazd.

Tak to o名列前o książka przedstawia Czytelnikom całą „rózę wiatrów” problemów stojących przed uczonymi i przed ludzkością — od pytania o przyczyny Wszechświata, poprzez zagadnienie istnienia cywilizacji kosmicznych, aż po „praktyczne korzyści z astrofizyki”, czyli użycie w przyszłości kontroli i manipulacji reakcji termojądrowej, bez której może nastąpić kres cywilizacji naukowo-technicznej. I jasno wynika z prezentowanej pozycji, że nie wolno nam zaniedbywać żadnej gałęzi nauki — nawet tej najbardziej (jakby się mogło wydawać) abstrakcyjnej.

T. ZBIGNIEW DWORAK
KALENDARZYZK ASTRONOMICZNY

Opracował G. Sitarski Luty 1979 r.

Słońce

Przebywa coraz dłużej nad horyzontem i w ciągu miesiąca dnia przybywa o ponad półtorej godziny. W Warszawie 1 lutego Słońce wschodzi o 7h17m, zachodzi o 16h23m, a 28 lutego wschodzi o 6h25m, zachodzi o 17h13m. W lutym Słońce wstępuje w znak Ryb; jego długość ekliptyczna wynosi wówczas 330°.

W dniu 26 lutego w godzinach popołudniowych przypada całkowite zaćmienie Słońca, u nas niewidoczne. Zaćmienie widoczne będzie w Ameryce Północnej i na Grenlandii. Tylko początek zaćmienia częściowego widoczny będzie na krótko przed zachodem Słońca na Wyspach Brytyjskich i na zachodnim wybrzeżu Europy.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12.18</td>
<td>6.04</td>
<td>27.98</td>
</tr>
<tr>
<td>3</td>
<td>12.98</td>
<td>6.18</td>
<td>1.64</td>
</tr>
<tr>
<td>5</td>
<td>13.78</td>
<td>6.31</td>
<td>335.31</td>
</tr>
<tr>
<td>7</td>
<td>14.54</td>
<td>6.44</td>
<td>303.98</td>
</tr>
<tr>
<td>9</td>
<td>15.30</td>
<td>6.55</td>
<td>282.64</td>
</tr>
<tr>
<td>11</td>
<td>16.02</td>
<td>6.66</td>
<td>256.30</td>
</tr>
<tr>
<td>13</td>
<td>16.72</td>
<td>6.76</td>
<td>229.98</td>
</tr>
<tr>
<td>15</td>
<td>17.41</td>
<td>6.84</td>
<td>203.64</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
B₀, L₀ — heliograficzna długość i szerokość środka tarczy.

Księżyc

W drugiej połowie miesiąca noce będą ciemne, bezksiężycowe, bowiem kolejność faz Księżyca jest w lutym następująca: pierwsza kwadra 4d2h, pełnia 12d4h, ostatnia kwadra 20d2h, nów 26d18h. Najdalej od Ziemi znajdzie się Księżyk 11, a najbliżej Ziemi 25 lutego. W lutym tarcza Księżyca zkryje dwa ciała niebieskie: Aldebarana (gwiazdę pierwszej wielkości w gwiazdozbiorze Byka) i Merkurego; żadne z tych zjawisk nie będzie u nas widoczne.

Planety i planetoidy

Rankiem nad wschodnim horyzontem błyszczy Wenus jak jasna gwiazda około —3.8 wielkości. Nad ranem też widoczny jest Uran jako gwiazda około 6 wielkości w gwiazdozbiorze Wagi i Pluton na
granicy gwiazdozbiorów Panny, Wolarza i Warkocza Bereniki, ale dostrzegalny tylko przez duże teleskopy (około 14 wielk. gwiazd.). Prawie całą noc możemy natomiast obserwować Jowisza świecącego w gwiazdozbiorze Raka jak gwiazda —2.1 wielkości oraz Saturna w gwiazdozbiorze Lwa jako gwiazdę około +0.6 wielkości; za pomocą lunety możemy obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyców Jowisza. Merkury, Mars i Neptun są niewidoczne.

* * *

1d O 21h34m obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety; koniec zaćmienia tego księżyca nastąpi o 24h55m, kiedy to pojawia się on nagle z cienia planety blisko prawego brzegu jej tarczy (patrząc przez lunetę odwracającą).

2d Księżyce 1 i 2 oraz ich cienie przechodzą na tle tarczy Jowisza. O 18h48m rozpoczyna przejście księżyc 1, a o 19h11m na tarczy planety pojawia się jego cień. Księżyce 2 rozpoczyna przejście o 19h25m, a jego cień o 19h54m. Koniec przejścia przebiega w następującej kolejności: księżyce 1 o 21h44m, jego cienia o 21h17m, księżyce 2 o 22h19m i jego cienia o 22h47m.

4d Wieczorem w pobliżu Jowisza dostrzegamy brak jego jednego księżyca: to księżyce 3 ukryty był za tarczą, a potem w cieniu planety; koniec zaćmienia tego księżyca obserwujemy o 20h26m (pojawi się on nagle z prawej strony tarczy, w lunecie odwracającej, w odległości równej promieniowi od tej brzegu).

6d1h Bliska złączenie Księżyca z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiorze Byka; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Środkowej i Północnej Ameryce, na północnym Atlantyku, w północno-zachodniej Afryce i w południowo-zachodniej Europie.

7/8d Po północy księżyce 1 i jego cień przechodzą na tle tarczy Jowisza, a księżyce 2 zbliża się do brzegu tarczy. Księżyce 1 rozpoczyna przejście o 2h6m, a jego cień o 2h27m. O 3h5m obserwujemy początek zakrycia 2 księżyca przez tarczę planety.

8/9d O 23h19m nastąpi początek zakrycia 1 księżyca Jowisza przez tarczę planety, a o 2h0m obserwujemy koniec zaćmienia tego księżyca.

9d7h Górne złączenie Merkurego ze Słońcem.

9/10d Księżyce 1 i 2 oraz ich cienie przechodzą na tle tarczy Jowisza. O 20h32m rozpoczyna przejście księżyce 1, a o 20h55m pojawia się jego cień. Księżyce 2 rozpoczynie przejście o 21h42m, a jego cień o 22h31m. Koniec przejścia księżyce 1 nastąpi o 22h48m, a jego cienia o 23h12m, natomiast księżyce 2 o 0h35m, a jego cienia o 1h24m.

10d O 11h Jowisz w złączeniu z Księżyce w odl. 4°. Wieczorem księżyce 1 ukryte jest za tarczą Jowisza, a potem w cieniu planety; o 20h29m obserwujemy koniec zaćmienia tego księżyca.

11d Księżyce 2 Jowisza ukryty jest w cieniu planety, a księżyce 3 zbliża się do brzegu tarczy. O 19h25m obserwujemy początek zakrycia księżyca 3 przez tarczę planety, a o 19h53m koniec zaćmienia księżyca 2. Koniec zaćmienia księżyce 3 nastąpi o 24h26m.

13d20h Złączenie Saturna z Księżyce w odl. 3°.

15/16d Księżyce 4 ukryty jest w cieniu Jowisza; koniec zaćmienia obserwujemy o 22h33m, kiedy to księżyce 4 pojawia się nagle w odległości
równej średnicy tarczy planety od jej prawego brzegu (w lunecie odbijającej). Tymczasem księżyc 1 zbliża się do brzegu tarczy i o 11h4m obserwujemy początek zakrycia.

16/17d Księżyc 1 i 2 oraz ich cień przechodzą na tle tarczy Jowisza. Księżyc 1 rozpoczcznie przejście o 22h16m, a jego cień o 22h50m. Księżyc 2 rozpocznie przejście o 23h55m, a tymczasem księżyc 1 zakłóci przejście o 0h32m, a jego cień o 1h6m. O 1h8m na tarczy planety pojawi się jeszcze cień księżyca 2.

17d O 19h30m obserwujemy początek zakrycia, a o 22h24m koniec zaćmienia 1 księżyca Jowisza.

18d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza, kiedy o 19h28m obserwujemy początek zakrycia 2 księżyca przez tarczę planety. O 19h59m księżyc 1, a o 19h34m jego cień kończą przejście, gdy tymczasem do brzegu tarczy zdąży książęcy 3, początek jego zakrycia obserwujemy o 22h23m, a o 22h27m koniec zaćmienia księżyca 2.

19d O 6h Uran w złączeniu z Księżyce w odl. 3°. O 7h Słońce wstępuje w znak Ryb.

21d12h Neptun w złączeniu z Księżyce w odl. 4°.

22/23d O 2h50m obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety.

23d16h Wenus w złączeniu z Księżyce w odl. 3°.

23/24d Księżycy 1, 2 i 4 przechodzą na tle tarczy Jowisza. O 21h20m obserwujemy początek przejścia księżyca 4. Księżyc 1 rozpocznie przejście o 0h2m, a o 0h44m na tarczy planety pojawi się cień tego księżyca. O 1h55m zakończy swoje przejście książęcy 4, a o 2h18m książęcy 1. Dokładnie w tym samym czasie (o 2h18m) rozpocznie przejście książęcy 2. Cień książęcy 1 zakończy przejście o 3h0m, a cienie księżycych 2 i 4 pojawią się dopiero na tarczy planety kolejno o 3h46m i 3h56m.

24d O 14h Uran nieruchomy wrektaescosii. Wieczorem obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety (o 21h16m); koniec zaćmienia tego księżyca nastąpi o 24h19m.

25/26d Księżyc 1 przechodzi na tle tarczy Jowisza, a księżyce 2 i 3 za tarczą planety. O 18h29m obserwujemy początek przejścia księżyca 1, a o 19h13m jego cienia. O 20h44m nastąpi koniec przejścia księżyca 1, a o 20h45m początek zakrycia księżyca 2; koniec wędrówki cienia księżyca 1 nastąpi o 21h29m. O 1h2m obserwujemy koniec zaćmienia księżyca 2, a o 1h47m początek zakrycia księżyca 3.

26d Całkowite zaćmienie Słońca niewidoczne w Polsce.

27d19h Bliskie złączenie Merkurego z Księżyce; zakrycie planety przez tarczę Księżyca widoczne będzie na południowym Pacyfiku, w Ameryce Południowej i na południowym Atlantyku. Wieczorem na tle tarczy Jowisza przechodzi książęcy 2 i jego cień; obserwujemy koniec przejścia: księżyca o 18h22m, a cienia o 19h58m.

Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim.

* * *

Komunikat: W końcu ub. roku wprowadzono po raz ósmy dodatnią sekundę przestępną. Oznacza to, że o północy z 31 grudnia na 1 stycznia wszystkie zegary zostały cofnięte o jedną sekundę.

Errata: W październikowym numerze Uranii na str. 308 w wierszu 16 od dołu — podaną błędnie datę urodzenia J. Komarzewskiego 1774 należy poprawić na 1744.
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.

B. Schlossberger — How were made in Poland first globes of the Moon.

Chronicle: An unusual remnant of a supernova explosion — Dust nebulae, globules and protostars — Mercury as a pantheon of Bachelors of Arts — Did a meteorite fall down the Moon in the year 1178? — Rings of Uran.

Observations: Positional observations of the Barnard's Star.

Conferences and meetings: On the IV Conference of CETI — International Youth Camp in Havelte.

Historical chronicle: Marcin Odlanicki-Poczobutt.

New books.

Astronomical calendar.

M. Хеллер — Эволюция Космоса и космологии.

Б. Шлессбергер — Как были созданы в Польше первые луначные глобусы.

Хроника: Необынный реликт испытаний сверхновой — Пылевые туманности, глобулы и протозвёзды — Меркурий как пантеон артистов — Упал ли в 1178 году на Луну метеорит? — Кольца Урана.

Наблюдения: Позиционные наблюдения Звезды Барнарда.

Конференции и съезды: О IV Конференции CETI — Международный молодёжный лагерь в Гавельте.

Историческая хроника: Мартин Олданький-Почовут.

Новые книги.

Астрономический календарь.

Druga strona okładki: Marcin Odlanicki-Poczobutt (1728—1810). Tablica pamiątkowa na dziedzińcu jego imienia w Uniwersytecie Wileńskim.

Indeks 38001

Drukarnia Związkowa, Kraków, ul. Mikołajskia 13 — Zam. 7434/78 — E-8 — 3.200
Cena zł 8.—
W dniu 12 lutego br. o godz. 18 nastąpi w Muzeum Techniki NOT w Warszawie (Pałac K. i N.) otwarcie wystawy pt. „Anatomia czasu”. Różne aspekty pojęcia czasu ilustrowane będą na wystawie licznymi eksponatami, m. in. zegarami z kilku muzeów (zegary słoneczne z Muzeum Przypkowskich w Jędrzejowie). Czas nie jest pojęciem jednoznacznym, jakby się na pierwszy rzut oka wydawało mogło, inaczej pojmuję go filozof, inaczej występuje w fizyce lub astronomii. Inaczej traktuje go historyk. Z okazji wystawy publikujemy w nin. numerze artykuł inż. Stanisława Lubertowicza. Trzon artykułu stanowi tekst prelekcji w głoszonej przez Autora na Sessji Naukowej PTMA w dniu 26 października 1974 r. w Jędrzejowie.

Na pytanie — czy wiemy coś konkretnego o istnieniu pozaziemskich cywilizacji — odpowiada prof. J. S. Szkłowski w wywiadzie udzielonym czasopismu słowackiemu Košmc.s, którego tłumaczenia dookonał S. R. Brzostkiewicz.

Nowości wydawnicze.

Kronika PTMA.

Kalendarzyk astronomiczny.
EWOLUCJA KOSMOSU I KOSMOLOGII

VIII. Początek i koniec Wszechświata

1. Eddington i Lemaitre

Hipoteza głosząca, że Wszechświat się rozszerza, weszła w sta­dium burzliwych dyskusji. Hubble, rozważny obserwator, wy­powiadał się na ten temat z dużą wstrzemimielnością. Arthur Eddington, teoretyk o dużej wyobraźni, nie miał większych za­strzeżeń co do samego faktu kosmicznej ekspansji, ale nasu­wała mu ona szereg bardzo zasadniczych pytań i zagadnień. W polemikach, jakie się wywiązały, wypowiadano zdania tak mało prawdopodobne, że Eddington uznał za stosowne uspra­wiedliwić ten fakt następującymi słowami: „Nie myślę, że by­łoby z korzyścią dla świata, gdyby zabroniono wypowiadania zdań, których prawdopodobieństwo fałszu wynosiłoby 1 do 10^{20}; dyskusje by na tym nieco ucierpiały. Chyba jedynymi ludźmi upoważnionymi do otwierania ust byliby przedstawiciele czy­stej matematyki”.

Eddington pracował właśnie nad zagadnieniem stabilności statycznego modelu Einsteina, gdy natknął się na pracę Lemaitre’a (swojego dawnego ucznia) z 1927 roku. Eddington podejrzewał od jakiegoś czasu, że statyczny świat Einsteina jest niestabilny, tzn. że łatwo może zostać wytrącony ze stanu równowagi i przejść w stan kurczenia się lub rozszerzania. Z pracy Lemaitre’a wynikało to natychmiast; model zapropo­nowany przez Lemaitre’a w 1927 roku to przecież nic innego, jak statyczny świat Einsteina, który w pewnym momencie utracił swoją chwiejną równowagę i zaczął się rozszerzać.

Eddington ponownie nawiązał kontakt z Lemaitre’em i za­częła się ich współpraca a nawet przyjaźń. Lemaitre dłuższy czas przebywał w Cambridge, gdzie Eddington był profesorem. W okresie jaki nastąpił, czasem trudno odróżnić, które idee pochodzą od Eddingtona a które od Lemaitre’a. W archiwum Lemaitre’a w Louvain-la-Neuve zachowało się sporo listów pisanych przez Eddingtona do swojego belgijskiego przyjaciela.

Eddington był znanym uczonym i wziętym pisarzem książ­zek filozoficzno- i popularno-naukowych. On to położył pod­waliny pod teorię ewolucji gwiazd, on stał się jednym z pier­wszych znawców ogólnej teorii względności (napisany przez
niego podręcznik teorii względności [1] należy do klasycznej literatury przedmiotu), on był autorem wielu poczytnych książek, takich jak „Nauka na nowych drogach” [2], czy „Rozszerzający się Wszechświat” [3].

2. Koniec świata z punktu widzenia fizyki matematycznej

Na wstępie swego artykułu Eddington zachęca do myślowej wycieczki w kierunku „końca świata”. Ale świat jest czterowymiarowym kontinuum i istnieje w nim wiele kierunków, w których możemy zmierzać „ku końcowi”. Trzeba zatem rozpocząć rozważania od określenia kierunku, w jakim chcemy iść. Wszystkie modele Wszechświata, znane dotychczas Eddingtonowi, były przestrzeni zamknięte. Oznacza to, że wyruszając z „tutaj” i idąc cały czas bez zmiany kierunku musimy „tutaj” powrócić. Ale wychodząc z „teraz”, nigdy do „teraz” nie powróćmy: czas nie jest zamknięty. Pozostaje więc wybór między dwoma kierunkami: w przeszłość, ku „początkowi” i w przyszłość, ku „końcowi”. Jak te kierunki odróżnić od siebie?

W tym miejscu Eddington pozwala sobie na filozoficzną dygresję. Istnieje pogląd, według którego kierunek upływu czasu wywodzi się wyłącznie z ludzkiej świadomości, a w materialnym świecie różnica między przeszłością a przyszłością nie ma większego znaczenia niż rozróżnianie pomiędzy prawym i lewym kierunkiem w przestrzeni. Czas upływa tylko dla nas, bez nas nie ma upływu czasu. Eddington odrzuca ten pogląd jako dziwaczny i niezgodny ze zdrowym rozsądkiem.

A zatem co w realnym świecie (niezależnie od naszej świadomości) wyznacza kierunek z przeszłości w przyszłość? Fizyka klasyczna znała tylko jeden „wskaźnik” kierunku czasu — wzrostanie w układach izolowanych wielkości zwanej entropią (co stanowi część drugiej zasady termodynamiki). Rozważmy
jakikolwiek układ izolowany. Zmierzmy entropię tego układu w dwu różnych chwilach. Ta chwila jest późniejsza, w której entropia jest większa. W ten sposób działa „zegar entropijny”, termodynamiczny wyznacznik kierunku czasu.

Entropię definiuje się tak, że można ją uważać za miarę dezorganizacji rozważanego układu: w danym układzie izolowanym wraz z chaosem rośnie entropia. A więc entropijna strzałka czasu wskazuje przyszłość pesymistyczną – ciągły wzrost nieuporządkowania i bałaganu. Istoty żywe, łącznie z ludźmi, nie stanowią wyjątku od tego prawa, nie mogą się wymknąć swemu termodynamicznemu przeznaczeniu. „Istota ludzka – pisze Eddington – w miarę jak się rozwija z przeszłości w przyszłość osiąga coraz wyższą organizację; przynajmniej tak lubi sobie wyobrażać. Ale jeśli uczynimy z człowieka układ izolowany, tzn. jeśli odetniemy zasoby żywności, napoju i powietrza, szybko osiągnie on stan, który każdy by rozpoznał jako «stan dezorganizacji».”

Może się zdarzyć, że w jakimś układzie zapanuje chaos zupełny, tak że bałagan nie może już wzrastać; mówiąc obrazowo – jest tak źle, że już nie może być gorzej. Entropia takiego układu osiąga maksimum. Powiadamy wtedy, że układ znajduje się w stanie równowagi termodynamicznej. Jeśli Wszechświat kiedyś osiągnął taki stan, zniknie w nim kierunek czasu. „Nie znaczy to – wyjaśnia Eddington – że czas przejście istnieć; istnieje on i jest rozciągły, tak jak przestrzeń istnieje i jest rozciągła, ale przestaje być własnością jednokierunkową. Jest jak jednokierunkowa ulica, na której nigdy nie ma żadnego ruchu.”

Według Eddingtona to właśnie oznacza koniec świata.

Ale dopóki strzałka czasu istnieje, istnieje także rozumnny obserwator, który może prowadzić swoje rozważania „pod prąd”, cofając się coraz dalej w przeszłość. Jeszcze raz oddajmy głos Eddingtonowi i posłuchajmy go uważnie, bo właśnie ten fragment jego artykułu zaważył na najbliższych dziejach kosmologii: „Cofając się wstecz w czasie – pisał Eddington – znajdujemy w świecie coraz więcej i więcej organizacji. Jeżeli nie zatrzymamy się wcześniej, musimy dojść do momentu, kiedy matura i energia świata znajdowały się w maksimum możliwej organizacji. Nie można już iść dalej. Doszliśmy do nagłego brzegu czasoprzestrzeni, zwykle nazywamy go «początkiem».”

Eddington nie chce tu dowodzić początku świata; przeciwieństwo, wyznaje, że „filozoficznie, pojęcie początku obecnego

W dalszym ciągu Eddington rozważa zagadnienia związane ze statystycznym charakterem praw fizyki oraz omawia kosmologiczne znaczenie zasady nieoznaczności Heisenberga. Ten ostatni punkt wnosi do dyskusji istotne elementy. Odkrycie przez Heisenberga zasady nieoznaczności wprowadziło do fizyki rewolucyjną zmianę: determinizm mechaniki klasycznej został zastąpiony indeterminizmem mechaniki kwantowej. „Wydaje się, że ta zmiana poglądów — pisze Eddington — uczyniła pojęcie rozwoju w czasie bardziej autentycznym niż było ono w fizyce klasycznej. Każda mijająca chwila wydaje na świat coś nowego — coś, co nie jest tylko matematyczną konsekwencją tego, co już było.” To, że możemy znać przeszłość, ale nie możemy znać przyszłości nie jest wynikiem naszej ignorancji: „brak nam danych (do czynienia przepowiedni), ponieważ przyjdą one na świat dopiero wtedy, gdy już będzie za późno na przepowiednie”, gdy staną się one faktem dokonanym.

Artykuł Eddingtona jest przykładem głębokiego spojrzenia na fundamentalne zagadnienia nauki. Można się z myślami w nim zawartymi zgadzać, lub nie zgadzać, ale nie można skwitować ich machnięciem ręki. Radzimy uważną lekturę tego artykułu wszystkim, którzy nie chcą traktować nauki jedynie jako użytecznego rzemiosła.

3. Początek świata z punktu widzenia teorii kwantów

Lemaitre na pewno nie był naukowym rzemieślnikiem. Przeczytał on uważnie artykuł Eddingtona, przemyślał go i wyniki tych przemyśleń opublikował w „Nature” [5]. Już sam tytuł krótkiej noty Lemaitre’a nawiązuje do tytułu wybranego przez Eddingtona: Eddington pisał o „końcu świata”, Lemaitre —
„o początku świata”, Eddington rozważał rzecz „z punktu widzenia fizyki matematycznej”, Lemaître — „z punktu widzenia teorii kwantów”. Nota Lemaître’a jest tak zwięzła, że możemy ją przeczytać prawie w całości, ograniczając komentarz do niezbędnego minimum.

Eddington w swoim artykule powoływał się na argumenty zaczerpnięte odrębnie z termodynamiki i z teorii kwantów, Lemaître łączy te argumenty w jedną całość:

„Zasady termodynamiki z punktu widzenia teorii kwantów można sformułować następująco: [1] Energia, której ilość jest zawsze stała, występuje w postaci dyskretnych kwantów. [2] Liczba odrębnych kwantów zawsze wzrasta. Jeżeli cofamy się w czasie, musimy napotykać coraz mniej kwantów, aż wreszcie dojdziemy do momentu, w którym cała energia Wszechświata jest upakowana w kilku lub nawet w jednym kwancie.”

Lemaître podjął także wątek statystycznych rozważań Eddingtona:

„W procesach atomowych pojęcia przestrzeni i czasu nie są niczym więcej, jak tylko pojęciami statystycznymi; zni-
kają one, gdy się je zastosuje do pojedynczych zjawisk, takich w których występuje tylko mała liczba kwantów. Jeżeli świat rozpoczął się od pojedynczego kwantu, pojęcia przestrzeni i czasu nie mogły mieć żadnego sensu na początku: mogły one nabierać sensownego znaczenia dopiero wtedy, gdy początkowy kwant rozpadł się na wystarczająco dużą ilość kwantów. Jeśli ta sugestia jest słuszna, początek świata zdarzył się nieco przed początkiem przestrzeni i czasu. Myślę, że taki początek świata jest wystarczająco różny od obecnego biegu Przysrody, by przestać być odpychającym.”

Spekulacje Lemaitre’a można uważać za pierwsze próby „kosmologii kwantowej”; zasada nieoznaczności Heisenberga musi w niej odgrywać istotną rolę:

„Oczywiście początkowy kwant nie zawierał w sobie całej przyszłej ewolucji, ale też — zgodnie z zasadą nieoznaczności — nie jest to wcale konieczne. Nasz świat rozumiemy dziś jako świat, w którym coś się rzeczywiście staje: cała historia Wszechświata nie musi być zapisana w pierwszym kwancie, jak piosenka jest zapisana na płycie fonografu. Cała materia świata musi być obecna na początku, ale historia, jaką świat ma opowiedzieć, jest pisana stopniowo — krok po kroku.”

Dziś rozważania Lemaitre’a wydają się nam nazbyt uproszczone, ale nie dziwmy się — Lemaitre pokusił się o stworzenie „kosmologii kwantowej” wtedy, gdy nawet neutron nie był jeszcze odkryty. Wkrótce fonografy zostaną zastąpione przez adaptery stereo, teoria cząstek elementarnych przeżyje kilka dekad burzliwego rozwoju, ale nadal nie będziemy mieć zadowalającej kwantowej teorii pierwszych chwil kosmicznej ewolucji.

Przypisy

Czas w filozofii i fizyce

Janowi Straszowi
swemu Nauczycielowi i Wychowawcy,
profesorowi filozofii, fizyki, astronomii i chemii,
dyrektorowi Państwowego Gimnazjum i Liceum
im. Stefana Żeromskiego w Kielcach w latach
1942—1947 — w XXX-tą rocznicę śmierci —
dedykuje tę pracę

Autor

I. Postawienie zagadnienia

Jednym z podstawowych zagadnień w pracy filozofów i fizyków jest czas. Czas jest też jednym z podstawowych zagadnień w astronomii. Na temat istoty czasu istniały różne poglądy w zależności od stopnia rozwoju nauki, od środowiska w którym działał zajmujący się tym zagadnieniem twórca oraz punktu wyjściowego, który w swych rozważaniach przyjął.

Najogólniej rzecz biorąc kwestia czasu sprowadza się do odpowiedzi na trzy zasadnicze pytania:

1. Czym jest czas — bytem samoistnym, czy bytem przypadłościowym?
2. Ile jest czasów — jeden, absolutny, czy wiele, zależnych od układów?
3. Jaki jest kierunek upływu czasu, czyli, czy czas jest continuum otwartym, czy continuum zamkniętym?

Rozszerzając postawione pytania stwierdzamy, że już w filozofii starożytnnej basenu Morza Śródziemnego, a później w filozofii chrześcijańskiej wieków średnich dzielono byty na: samoistne (ov ovo, ens per se) oraz byty przypadłościowe, wtórne, których istnienie uzależnione jest od innych bytów, wcześniej powstałych. W filozofii marksistowskiej odpowiednikami tych pojęć mogą być pojęcia: bazy i nadbudowy. Do której więc kategorii bytów należy czas?

Także odpowiedź na pytanie o „ilość czasów” — wymaga wyjaśnienia, że można każde zdarzenie rozpatrywać w kategoriach czasu jednego, uniwersalnego, niezmiennego dla całego Wszechświata i szukać równań, przy pomocy których można by sprowadzić różnice w postrzeganiach do wiadomej, a dającej się określić wartości, a można też przyjąć istnienie różnych czasów, odrębnych dla każdego układu względnie wyosobionego, różnie postrzeganych w zależności od stanowiska obserwatora.
Również pytanie o kierunek upływu czasu jest istotne dla omawianego zagadnienia. Można przyjąć, że czas jest \textit{continuum} otwartym, którego strukturę możemy przedstawić liniowo:

![Rys. 1.]

gdzie po zdarzeniu „A” następuje zdarzenie „B”, po „B” — „C” i tak \textit{ad infinitum}, lub też, że czas jest \textit{continuum} zamkniętym, którego strukturę możemy przedstawić w formie okręgu:

![Rys. 2.]

gdzie po zdarzeniu „A” następuje „B”, po „B” — „C”, a po „C” znowu „A” i tak dalej.

Bardzo istotnej sprawy związków czasu z przestrzenią, eksponowanej przez wielu autorów — filozofów i fizyków, nie wyodrębniam w czwarte pytanie głównie ze względów metodycznych, gdyż tkwi ono w rozważaniach służących do dania odpowiedzi na pytania postawione, w szczególności pierwsze.

II. Przegląd historyczny

Z pewnym żalem rezygnuję z przedstawienia poglądów na zagadnienie czasu w filozofii starożytnej i szerszych kręgach filozofii Wschodu, jednak konieczność zachowania spójności wkładu przesądziła o wyeliminowaniu tych nieraz bardzo ciekawych dociekań. Zaczynam od przełomu starożytności i wieków średnich.

Augustyn z Tagasty (354—430 po Chr.) — pyta w swych „Wyznaniach” (Ks. XI., rozdz. XIII):

Czym jest bowiem czas? — Czy jest wśród tego, co wspominamy w potocznej mowie, rzecz bardziej nam bliska i zwyczajna jak czas? Ktoż potrafi to łatwo i krótko wyjaśnić? Ktoż zdola choćby myśla...
pojąć to tak, by mógł słowem określić? Jeśli mnie nikt o to nie pyta, wiem; gdy zaś chce wyjaśnić pytającemu, nie wiem. Wiem jednak i śmiało to twierdzić, że wiem, iż gdyby nic nie przemijało, nie byłoby czasu przeszłego, a gdyby nic nie nadchodziło, nie byłoby czasu przyszłego, a gdyby niczego nie było, nie byłoby czasu teraźniejszego... czas istnieje, o ile dąży do tego, aby nie istnieć...

A jednak mówimy o czasie długim i o czasie krótkim i mówimy to tylko o czasie przeszłym i czasie przyszłym. Lecz jakim prawem długie jest lub krótkie to, co wcale nie jest?...

Jeśli można sobie wyobrazić okres czasu nie dający się już podzielić na żadne cząstki, choćby najdrobniejsze, to jest właśnie jedyny czas, który może się nazywać teraźniejszym...

A zatem są czasy przyszłe i przeszłe... Jeśli bowiem są czasy przyszłe i przeszłe, chcę wiedzieć, gdzie są... Gdziekolwiek są, to nie są tam przyszłe albo przeszłe, lecz teraźniejsze. Gdziekolwiek zatem są, jakiekolwiek są, istnieją tylko jako teraźniejsze...

Dzieciństwo moje na przykład, którego już nie ma, jest w czasie przeszłym, którego już nie ma; gdy jednak przypominam je sobie i opowiadam, obraz jego widzę w czasie teraźniejszym, ponieważ jest jeszcze w mojej pamięci. Czy podobnie jest także z przepowiadaniem rzeczy przyszłych, to znaczy, czy obrazy tych rzeczy, których jeszcze nie ma, przedstawiają się w umyśle jako teraźniejsze?...

Gdy się więc mówi o rzeczach przyszłych nie widzi się samych rzeczy, których jeszcze nie ma, bo dopiero będą, lecz może ich przy­

Możemy na przykład — widząc zorze poranne wnioskować prawidłowo, że za chwilę wzejdzie Słońce, lub widząc nadciągające chmury wnioskować, że niebawem spadnie deszcz.

I dalej Augustyn pisze: „Są trzy czasy: teraźniejszy przeszłego, teraźniejszy teraźniejszego i teraźniejszy przyszłego.” Odpowiadają im: pamięć, bezpośrednie widzenie i oczekiwanie. I dalej zapytuje: „A w jakiś sposób mierzymy czas teraźniejszy, skoro nie w przestrzeni?” I stwierdza: „Czas jest pewnego rodzaju rozciągłością... czas jest ruchem ciał...”, a człowiek „oczekuje... skupia uwagę... pamięć”.

Iśwarakrszna (III w. po Chr.) w tekście Sāmkhyakārikā pisze, że każde zjawisko ewolucji kosmicznej nacechowane jest aktywnością, przemianą czy też ruchem (parispanda). W najkrótszym odcinku czasu (Ksana) cały Wszechświat przechodzi przemianę. W świecie empirycznym przestrzeń i czas ukazują się jako ograniczone i uważa się, iż pochodzą one z ruchu
(akasi), gdyż są one uwarunkowane rzeczami współistniejącymi w przestrzeni i ciałami poruszającymi się w czasie.

Przestrzeń i czas są abstrakcjami. Nie stanowią one substancji, lecz stosunki wiązające zdarzenia rozwoju rzeczywistości fizycznej (prakriti). Zdarzenia pozostają w stosunkach przestrzeni i czasu. Nie postrzegamy nieskończonej przestrzeni i czasu, toteż uważa się, że skonstruował je rozum.

Czas, mając taką naturę, nie odpowiada niczemu rzeczywistemu, lecz jest wytworem umysłu i stanowi następstwo postrzeżeń, czy też słów; chwila jest jednak obiektywna.

Chwila — to czas potrzebny atomowi, będącemu w ruchu, dla opuszczenia jednego punktu i przejścia do punktu następnego.

I tutaj — niech Czytelnik pomyśli chwilę — kiedy i gdzie to zostało powiedziane. Refleksja taka będzie na pewno bardzo pożyteczna zarówno dla filozofów jak i fizyków.

Siátkara (680? lub 788? do 820 po Chr.) powiada, że nasze doświadczenie ma za swą ogólną formę przestrzeń, lecz rzeczywistość jest nieprzestrzenna i niepodzielna. Wszystko, co jest ograniczone w przestrzeni, jest również ograniczone w czasie. Czas jest rzeczywisty (tylko) w świecie doświadczalnym. Lecz niekończące się tworzenie świata jest samowystarczalne (i pozaczasowe).

I teraz przechodzimy od razu do czasów nowożytnych, podając telegraficzny przegląd myśli o czasie wybitnych filozofów.

Isaac Newton (1642—1727).

Przy formułowaniu zasad mechaniki wprowadził obok pojęcia przestrzeni względej, znanej z doświadczenia, pojęcie przestrzeni absolutnej, czasu absolutnego i ruchu absolutnego. Uważał, że przestrzeń absolutna nie posiada własności materialnych i jest natury duchowej; łączył ją więc z duchem.

Gottfried Wilhelm Leibniz (1646—1718).

Immanuel Kant (1724—1804).

Twierdził, że czas i przestrzeń pozostają po wyłączeniu wrażeń. Wszelkich wrażeń doznajemy bowiem w przestrzeni i czasie, ale przestrzeń i czas nie są przedmiotem wrażeń. Przestrzeń jest jedna i czas jest jeden. Gdy mówimy o różnych przestrzeniach, to oznacza, że mamy na myśli różne części tej samej przestrzeni. Przestrzeń i czas są wyobrażeniami koniecznymi, nie podobna ich bowiem usunąć z myśli. Można sobie wyobrazić, że nie ma przedmiotów w przestrzeni, ale nie można sobie wyobrazić, że nie ma przestrzeni, tak samo nie można sobie wyobrazić braku czasu.

Czas tłumaczy u Kanta apodyktyczny charakter arytmetyki. Kant twierdzi, że:
— matematyka zawiera sądy powszechne i konieczne,
— sądy te mają za przedmiot przestrzeń i czas,
— sądy te są a priori, jako powszechne i konieczne; nie są one empiryczne,
— sądy takie są możliwe dzięki temu, że przestrzeń i czas nie są przedmiotami realnymi poza nami, lecz są w nas — są formami naszej zmysłowości.
Wytłumaczenie sądów apriorycznych matematyki doprowadziło Kanta do szczególnego poglądu na przestrzeń i czas, do fenomenalizmu. Ponieważ przestrzeń i czas są subiektywne, a więc świat przestrzenny i czasowy może być jedynie zjawiskiem, ale za to sądy o świecie przestrzennym i czasowym mogą być niezależne od doświadczenia, powszechne i konieczne.

Nie był to pogląd nowy, gdyż już od Platona metafizycy uważali świat przestrzenny i czasowy za zjawiskowy i nierealny. Ta nowa, kantowska teoria przestrzeni i czasu miała dwie konsekwencje najogólniejszego znaczenia:

— Poznanie zostało rozdzielone na dwa czynniki, stano­wiące jego formę i materię; forma jest podstawą wiedzy aprio­rycznej,

— przestrzeń i czas zostały uznane za formy subiektywne, ważne tylko dla zjawisk.

Ten subiektywizm i fenomenalizm stanowiły przewrót wobec naturalnego sposobu myślenia. Fenomenalizm ten nie był intencją Kanta był on konsekwencją jego badań myślowych. Przyjął go dla wytłumaczenia odrębnej natury wyobrażeń przestrzeni i czasu oraz dla uzasadnienia matematyki, jako nauki a priori.

Hans Vaihinger (1852—1933).

Dla Vaihingera fikcją było to wszystko w umyśle, co nie odpowiadało rzeczywistości, a co mimo to jest życiowo po­trzebne. Fikcją są więc wszystkie ogólne pojęcia i teorie, wszystkie sztuczne klasyfikacje i definicje, wszystkie schematy i modele, wszystkie koncepcje i abstrakcje, wszystkie persno­nifikacje i hipotezy. Fikcją jest więc także pojęcie absolutnej przestrzeni i czasu.

Całe ujęcie tego co postrzegamy jest subiektywne, a to co subiektywne jest fikcją. Spostrzegamy tu pewne analogie z Machem i Avenariussem („są tylko wrażenia”).

Henri Bergson (1859—1941).

Dwa pojęcia, które dotąd w filozofii, zwłaszcza od Newtona i Kanta, występowały jako bliźniacze — czas i przestrzeń — zostały u Bergsona gwałtownie rozerwane. W czasowości widać on najgłębszą cechę rzeczywistości a w przestrzenności — jej deformatcję.

Alfred North Whitehead (1861—1947).

Przyjmował dwa równoległe światy, jeden w umyśle, drugi poza nim. Rozkładał w ten sposób przyrodę na rzeczywistość i jej zjawiska (bifurcation of nature). Pisał, że „poza doświad-
czeleniem przedmiotów — nie ma nic, nic, nic, jest tylko czysta nicość” (zgodnie z Renouvierem, Jamesem i Russelem — z dawniejszych — z Machem i Avenariusem). Dla Whitehead’a jedyną rzeczywistością była niepodzielna całość przyrody, połączenie wszystkiego z wszystkim — jak nigdyś w początkach filozofii u Anaksagorasa. Żaden jej składnik nie istnieje samoistnie. Nie ma czasu bez przestrzeni, ani przestrzeni bez czasu, ani materii bez czasu i przestrzeni, ani czasu i przestrzeni bez materii.

Albert Einstein (1879—1955).
Zrelatywizował on pojęcie czasu i przestrzeni. Wykazał, że twierdzić iż zdarzenie „A” jest jednoczesne ze zdarzeniem „B” można tylko z zastrzeżeniem: „z punktu widzenia obserwatora „C”, czy układu „C”. Dla drugiego obserwatora czy układu „D”, znajdującego się względem układu „C” w ruchu jednostajnym i prostoliniowym, zdarzenia „A” i „B” nie będą jednoczesne.

Rozumowanie takie implikuje paradoksalny stan rzeczy: że istnieje nie jeden czas, lecz wiele czasów; że dwa zjawiska mogą być i zarazem (z innego punktu widzenia) nie mogą być jednoczesne; że kolejność zjawisk może być względna.

A względności czasu towarzyszy względność stosunków przestrzennych; odległość dwu przedmiotów wypada różnie, jeżeli jest mierzona w dwu układach poruszających się jeden względem drugiego ruchem jednostajnym i prostoliniowym.

Przestrzeń i czas są nierozłącznie związane z materią. O ile pogląd na czas i przestrzeń w czasach przedeinsteinowskich można było określić formułą: Tempus est absolutum, spatium est absolutum to od Einsteina formuła ulega zmianie: Continuum spati et temporis est absolutum.

Wszechświat Einsteina jest niczym innym jak manifestacją pewnego typu geometrii. Świat nasz nie jest pod względem matematycznym byle jaki, lecz jest racjonalnym, doskonałym, uporządkowanym światem matematycznym, przenikniętym Najwyższą Kosmiczną Mądrością.

Przy pomocy zegara nie możemy określić czasu zdarzenia, którego odległość od zegara nie jest do pominięcia; brakuje do tego sygnałów rochodzących się momentalnie, przy pomocy których można by porównać czas zdarzenia z czasem zegara. Dla uzupełnienia sposobu określania czasu można wykorzystać zasadę stałości prędkości światła w próżni.

Teoria względności bywa często krytykowana za przypisywanie — bez należytego uzasadnienia — naczelnego znaczenia
rozchodzeniu się światła w próżni, opierając pojęcie czasu na propagacji światła. Ażeby przypisać pojęciu czasu znaczenie fizyczne potrzebne są jednak jakieś zjawiska, pozwalające na ustalenie związku między różnymi miejscami. Dobrze jest wybierać zjawiska, o których coś wiadomo. A właśnie dzięki pracom Maxwella i H. A. Lorentza — zjawiskiem tym jest prędkość światła w próżni.

W fizyce przedrelatywistycznej przestrzeń i czas — jak już powiedziano — stanowiły pojęcia oddzielne. Pomiar czasu nie zalegał od wyboru układu odniesienia. Prawdziwym elementem stosunków czasoprzestrzennych jest zdarzenie określone przez cztery liczby: \(x, y, z, t \).

Pojęcie czegoś dzisiejszego się — zawsze wiązało się z \textit{continuum} czterowymiarowym, jednak absolutny charakter przedrelatywistycznego czasu utrudniał zdanie sobie sprawy z tego faktu. Zdarzenie fizyczne — posiada właściwe znaczenie — jako całość. Między dwoma zdarzeniami zachodzi pewien związek w przestrzeni i czasie.

I na Einsteineń kończymy nasz przegląd historyczny filozoficznych poglądów na czas i związaną z nim przestrzeń. Reszta, to już współczesność. A współczesność pojęcia czasu to fizyka. I do niej teraz przechodzimy mając jednak ogromny niedosyt tego, co przedstawiono w części filozoficznej. To tak, jakby ktoś, z dalekiej podróży w przestrzeni i czasie przywiózł parę garsteek piasku i powiedział: patrzcie, oto tak wyglądają tamte ziemie. Ale zainteresowani mogą przecież sięgnąć do lektury dzieł wymienionych i niewymienionych filozofów i rozszerzać swą wiedzę na temat czasu w filozofii — \textit{ad infinitum}.

* * *

Tytuły następnych rozdziałów: III. Czas w fizyce i astronomii, IV. Wszechświat i czas, V. Wnioski. Literatura.

O UNIKATOWOŚCI ZIEMSKIEJ CYWILIZACJI WE WSZECHŚWIECIE

Wywiad z prof. J. S. Szkłowskim

Nazwisko profesora Josipa S. Szkłowskiego nie jest nam obce. To przecież światowej sławy astrofizyk radziecki, znany w świecie astronomicznym ze swych prac na temat fizyki Słońca, ewolucji gwiazd, natury supernowych i materii międzygwiazdowej. Ale dla szerokich

\textbf{KOZMOS:} Co skłoniło Pana do zrewidowania poglądu na możliwość istnienia pozaziemskich cywilizacji?

\textbf{SZKŁOWSKI:} W ostatnich latach problematyka istnienia pozaziemskich form życia stała się bardzo popularna; mam nawet wrażenie, że aż niezdrowo popularna. Rozwiązywać ten problem — owsem, ale przez szereg lat kroczyć po omacku i dyskutować o tym zagadnieniu jedynie na podstawie spekulacji i indywidualnych poglądów? To przecież nie jest droga naukowego poznania. Od pewnego zaś czasu uważa się za zupełnie oczywiste, iż pozaziemskie cywilizacje istnieją i to nawet w wielkiej liczbie. Na ten temat wypowiadało się wprawdzie wielu prominentów świata naukowego, laureatów Nagrody Nobla, sławnych fizyków, astronomów i biologów, a także filozofów, socjologów i autorów powieści fantastyczno-naukowych. Lecz wszystkie te wypowiedzi nie były i nie są poparte żadnym konkretnym faktem.

\textbf{KOZMOS:} Martin Ress, astrofizyk z \textit{Ames Research Centre} NASA powiedział swego czasu, że brak dowodów na istnienie pozaziemskich cywilizacji nie oznacza wcale, że ich nie ma!

\textbf{SZKŁOWSKI:} Bardzo poprawne rozumowanie — z negatywnych faktów nie można wyciągać dalekoszczędnych wniosków. Ale jest logiczne, by z negatywnych faktów wyciągnąć jakiś konkretny wniosek. W przeszłości odbyło się szereg sympozjów naukowych na temat możliwości nawiązania kontaktu z pozaziemskimi cywilizacjami i tylko dlatego, że się takie sympozja odbyły, zaczęto uważać, iż pozaziemskie cywilizacje istnieją. Lecz wszystkie dotychczasowe próby odebrania sygnałów od innych cywilizacji (do października 1977 r. przeprowadzono ogólnie 13 takich eksperymentów) zakończyły się niepowodzeniem. Koronny argument proklamatorów pozaziemskich cywilizacji, znana Gwiazda Barnarda w gwiazdozbiorze
Wężownika ze swym hipotetycznym układem planetarnym, odpadł: okazało się niedawno, że wyniki pomiarów Petera van de Kamp'a błędnie interpretowano. Zaobserwowane bowiem przez niego odchylenia w położeniu gwiazdy na niebie nie były wywołane grawitacyjnym wpływem planet, ale powstały na skutek zwykłego zniekształcenia instrumentów. Ostatnio stwierdzono też, że aż 98 procent gwiazd podobnych do Słońca nie zahamował swej ewolucji i nie zaprzestał przeobrażać się w gwiazdę. To oczywiście znaczy, iż układy planetarne są we Wszechświecie o wiele rzadszym zjawiskiem niż pierwotnie przypuszczano.

KOZMOS: To jest wyłącznie astronomiczny argument, a nam się wydaje, iż punkt ciężkości głoszonej ostatnio przez Pana teorii leży gdzie indziej?

SZKŁOWSKI: Tak, rozwiązanie tego ważnego zagadnienia wymaga czegoś więcej niż spojrzenia jedynie poprzez pryzmat astronomii. Spójrzmy na rzecz z tego stanowiska, które stanowi najbardziej charakterystyczną właściwość przejawu dojrzałych form życia. Zdaniem mojego ucznia, Mikołaja S. Kardaszewa, jest to dążność do gromadzenia maksymalnej ilości informacji o otaczającym nas świecie, o całym Wszechświecie. Pragnął bym go uzupełnić: według mnie jest to tendencja do nieograniczonej ekspansji rozumu w przestrzeń kosmiczną.

KOZMOS: Czy taka ekspansja rozumu jest realna?

SZKŁOWSKI: W zasadzie jest możliwa i nawet nieunikniona przy eksponowanym rozwoju wszystkich wskaźników cywilizacji. Oczywiście, przed ludzkością już dziś zarysowują się krytyczne momenty; zagraża nam na przykład wyczerpanie zasobów surowcowych, eksplozja populacji, dewastacja naturalnego środowiska, głód. Problemy te okazał się groźniejsze, gdy sobie uświadomimy, jak dzisiejszy świat jest podzielony. A przecież przeciwstawiać się nim zdolne jest jedynie społeczeństwo bezklasowe.

KOZMOS: Mówimy jednak o najodleglejszych perspektywach ludzkości. Jakie według Państwa poglądy są możliwe warianty rozwoju ludzkości i cywilizacji w ogóle?

Drugim wariantem — uspokojenie ludzkości w tzw. „zerowym rozwoju”, ograniczenie populacji i produkcji, idylliczny żywot na „polinezyjski sposób”.

KÖZMOS: Innych możliwości nie ma?

SZKŁOWSKI: Gdyby ludzkość nie potrafiła rozwiązać wspomnianych wyżej problemów, nie umiała się ze sobą jakoś stopniowo porozumieć i gdyby doszło do wojny, to naturalnie pojawiłaby się trzecia możliwość — zagłada naszej cywilizacji. To, że zdajemy sobie sprawę z takiego niebezpieczeństwa, winno nas skłonić do uczynienia wszystkiego, by wykluczyć taką ewentualność.

KÖZMOS: Jak Pańskim zdaniem wyglądałoby dalsze prze­nikanie w przestrzeń kosmiczną przy nieustannej ekspansji?

SZKŁOWSKI: Już nasz wielki rodak Konstanty E. Cioł­kowski przepowiedział, że ludzkość nie pozostanie wiecznie w swej kolebce — na Ziemi, a rozwój astronautyki w pełni te słowa potwierdza. Nie sądzę, by przyszłe generacje zadowo­liły się tylko lotami w obrębie Układu Słonecznego; ludzkość będzie chciała przeniknąć o wiele głębiej w Galaktykę, wyko­rzystać ją dla swych potrzeb i swego dalszego rozwoju. Myślę, że dzisiejsza najmłodsza generacja dożyje realizacji projektów typu „miast kosmicznych”, o jakich mówi Gerald K. O’Neil, a później — być może na przełomie 21 i 22 stulecia — nasi prawnukowie wybudują sztuczną biosferę wokół Słońca. Czas potrzebny na opanowanie całego Układu Słonecznego przy eks­ponencjalnym rozwoju wynosi tylko 500 lat. A za następne 500 lat nasz układ planetarny stanie się za ciasny i ludzkość stanie przed podobnymi dylematami jak dziś my. W tym jed­nak czasie będzie już na tyle dojrzała, że za pomocą swej technologii potrafi opanować najbliższe gwiazdy a w końcu całą Galaktykę. Kosmiczna migracja ludzkości będzie miała charakter „fali uderzeniowej”, cywilizacja będzie opanowywać coraz większe przestrzenie Kosmosu dla swej potrzeby. Przy ekspanowym rozwoju na kolonizację układu Drogi Mlecznej trzeba tylko kilku milionów lat, a co to jest w kosmicznej skali czasu? Jeżeli więc w Kosmosie istnieją inne cywilizacje, to przynajmniej część z nich (o ile nie wszystkie) winna się rozwijać w opisanym powyżej duchu. Przy wieku naszej Ga­laktyki powinniśmy zatem obserwować astroinżynieryjną dzia­łalność dojrzałych cywilizacji, które byłyby starsze od ludz­kości „tylko” o miliony, jak nie o miliardy lat. Niestety, żad­nej działalności astroinżynieryjnej nie obserwujemy i w tym widzę dowód naszej kosmicznej samotności.
KOZMOS: Stanisław Lem, znany pisarz „science fiction” po opublikowaniu Pańskiego artykułu wystąpił z zarzutem, iż może istnieć taki sposób przejawu astroinżynieryjnej działalności dojrzałych cywilizacji, który dla nas pozostaje utajony. W swej polemie argumentował tym, że nie znamy wszystkich praw przyrody, które być może dają takie możliwości, o jakich się nam nie śniło. Wymienia na przykład kontakt z inną cywilizacją nie na falach radiowych?

SZKŁOWSKI: Lem głosi, że supercywilizacje wykorzystują energię tak efektywnie, iż niemal nic jej nie umyka w przestrzeni kosmicznej. Jakby zapomniał o tym, że prawa termodynamiki do czegoś takiego w ogóle nie dopuszczają — każdy stacjonarny obiekt musi wypromieniować prawnie tyle samo energii, ile jej przyjął. A zatem astroinżynieryjnej działalności nie można ukryć. Lem oprócz tego wierzy w nieograniczoną możliwość wiedzy, jak gdyby obiektywnie obowiązujące prawa przyrody mogłyby być w przyszłości pominięte. W tym poglądzie nie jest osamotniony — opowie historyjkę z włoskim reżyserem filmowym Antonionim, który w styczniu 1976 r. pokazał mi scenariusz filmu rysunkowego następującej treści: w małym miasteczku włoskim dzieci puszczają latawca i jednego razu latawiec ten ulatuje w przestrzeń kosmiczną... Zwróciłem mu uwagę, że coś takiego nie jest możliwe, gdyż istnieje grawitacja. Ku mojemu ogromnemu zaskoczeniu Antonion odpowiedział: Istotnie, dziś to nie jest możliwe, ale za jakieś sto lub więcej lat?... Tymczasem ani dziś, ani nigdy w przyszłości takie zdarzenie nie będzie możliwe. Rozwój nauki pozwala, wprawdzie coraz lepiej rozumieć grawitację, technika umożliwia pokonywać ją przy lotach kosmicznych, lecz sama grawitacja będzie istniała obiektywnie dalej bez względu na to, co sobie o niej myślimy. Sądzę, iż nie muszę nikogo przekonywać, że nie można zbudować „perpetuum mobile” i że nie da się przekroczyć szybkości światła w próżni. Prawa przyrody nie dopuszczają do takiej możliwości. Ludzkość w przyszłości odkryje jeszcze wiele nowych praw, ale nie będą one przeciwnie dotychczasowym. Rozszerzą oczywiście obszar ich oddziaływania i obowiązywania.

KOZMOS: Pogląd, że ziemska cywilizacja jest jedyną we Wszechświecie ma zapewne duże znaczenie filozoficzne?

SZKŁOWSKI: Już tylko myśl o tym, że ludzkość jest awangardą rozumu we Wszechświecie powinna nas skłonić do życia lepszego, moralniejszego i bardziej godnego. Sama myśl o kosmicznej samotności winna nas uczyć szacunku dla ludzi,

Wstęp i tłumaczenie: S. R. BRZOSTKIEWICZ

KRONIKA

Orbitalny test kosmologiczny

Z. PAPROTY
Ewolucja galaktyk

Z. PAPROTNY

Masy składników Algola

Algol (Beta Perseusza) jest jak wiadomo układem składającym się z przynajmniej trzech składników. Występujące co 2,87 dnia minimum spowodowane jest częściowym zakryciem najjaśniejszego składnika układu, Algola A, przez składnik B. Wблиźu środka minimum głównego można zauważyć niektóre linie absorpcyjne trzeciej gwiazdy Algol C. Różnica jasności między składnikami A i B uniemożliwiała dotąd spektroskopowe obserwacje składnika B, a przez to ustalenie mas wszystkich gwiazd systemu. Dopiero niedawno J. Tomkin i D. L. Lambert, wykorzystując 2,7-metrowy teleskop Obserwatorium McDonalda, zdolali wykryć słabe linie absorpcyjne sodu w widmie Algola B i zmierzyć ich przesunięcia odpowiadające prędkości radialnej gwiazdy. Odkryto więc, że zakres obserwowanych prędkości radialnych Algola B jest 4,6 raza większy niż Algola A, co oznacza że składnik A jest 4,6 raza bardziej masywny niż B. Wykorzystując znany już stosunek mas Algola A i C, wspomniani naukowcy ustalili masy składników A, B i C Algola na odpowiednio 3,7, 0,81 oraz 1,7 masy Słońca.

Z. PAPROTNY

Astronomia w podczerwieni

Podczerwony zakres widma e—m, (IR), dzielony zazwyczaj na podczerwień bliską, średnią i daleką (1—30, 30—300 i 300—1000 mikrometrów), jest jednym z najbardziej perspektywicznych obszarów obserwacyjnych astronomii. Wiąże się to z rozwojem techniki kosmicznej (1), a dokładniej z instalacjami satelitarnymi w rodzaju IRSAT (europejski satelita do badań w podczerwieni) czy LIRTS (amerykański projekt trzymetrowego teleskopu IR, który miałby być częścią stacji orbitalnej Spacelab). Najbardziej efektywnym pokoi co instrumentem astronomii w podczerwieni pozostaje Napowietrzne (samolotowe) Obserwatorium im. Kuipera, wyposażone w 91 cm teleskop. Pierwszy rok jego eksploatacji zamknął się liczbą 550 godzin obserwacyjnych, w czasie których 14 grup naukowców zrealizowało swoje programy badawcze na wysokości 13—14 kilo-
metrów (2). W trakcie jednego z nich odkryte zostały pierścienie Urana, o czym w swoim czasie donosiła Urania. Od lotów J. Hopkinsa na Stratoscope 2 w roku 1960 datują się balonowe obserwacje w podczerwieni. W chwili obecnej balony do obserwacji astronomicznych w IR wykorzystuje około 30 ośrodków naukowych na świecie. Aktualny rekord wysokości lotu badawczego wynosi 52 km a udźwigu 5 ton (3). Główne kierunki badań i zadania astronómii w podczerwieni charakteryzuje G. G. Fazio (4): — obserwacje ciał o temperaturze niższej od 4000 K, w tym Księżyc, planet i chłodnych obiektów galaktycznych — badania obserwacji obiektów pozagalaktycznych z maksimum emisji w IR — obserwacje galaktyk i kwazarów charakteryzujących się potężnym promieniowaniem nietermicznym — badania linii cząsteczkowych w zakresie IR. Realizacja tych zadań mogłaby rzucić światło na takie zagadnienia współczesnej astronomii jak rozkład pyłu i gazu wewnątrz Galaktyki i związki tego rozkładu z jej strukturą, natura źródeł energii jąder niektórych galaktyk o niezwykle wysokiej jasności, itd. Można oczekiwać, że przełomem w astronomii podczerwonej okaże się uruchomienie w roku 1979 dwóch dużych teleskopów IR: brytyjskiego 3,8 metrowego i amerykańskiego 3 metrowego. Oba instalowane są aktualnie na szczycie wygasłego wulkanu Mauna Kea (Hawaje). Pracuje już tam 3,6 metrowy teleskop C—H—F (Kanada—Hawaje—Francja) oraz 2,2 i 0,6 metrowe teleskopy Uniwersytetu Hawajskiego. Wszystkie te instrumenty ulokowano na Mauna Kea ze względu na istniejące tam wyjątkowo dobre warunki atmosferyczne (astroklimat), w szczególności zaś niezwykle małą zawartość pary wodnej w atmosferze. Ten ostatni czynnik uczyni wkrótce z Hawajów światowe centrum naziemnej astronomii w podczerwieni (5).

(3) Infraokrasnaja astronomija, Moskwa, Mir, 1977, 213.

Z. PAPROTNY

OBSERWACJE

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 9/78

W miesiącu wrześniu nastąpił raptowny znaczný wzrost plamotwórczej aktywności Słońca. Średnia miesięczna względna liczba Wolfa za miesiąc wrześniu 1978 r.

\[R = 133,6 \]

a więc wzrosła ponad dwukrotnie w stosunku do miesiąca poprzedniego \(R_{vIII} = 59,7 \).

We wrześniu na widocznej tarczy Słońca odnotowano powstanie 29 nowych grup plam słonecznych, przeważnie dobrze rozbudowanych i długotrwałych. Rozpiętość ukazywania się grup w szerokości heliograficznej: od \(-36^\circ\) do \(+36^\circ\).

Szacunkowa średnia miesięczna powierzchnia plam za miesiąc

\[S = 1634 \cdot 10^{-6} \]

\[\text{wrzesień 1978 r.} \]
Dzienne liczby plamowe:

Wykorzystano: 227 obserwacji 23 obserwatorów w 29 dniach obserwacyjnych.

Dąbrowa Górnicza, 6. 10. 1978

Raport IX 1978 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 17,9 (127 MHz, 30 dni obserwacji) i 159,3 su (2800 MHz, 25 dni). Średnia miesięczna wskaźników zmienności — 0,50.

Po spokojnym Słońcu sierpniowym ponownie mamy stosunkowo wysoką aktywność. Dla częstotliwości 127 MHz we wrześniu opracowano 17 zjawisk niezwykłych i, jak zwykle, większość stanowiły burze szumowe. Jeden z wybuchów burzy z dnia 24 IX przewyższył średni poziom aż do 670 su. Ze zjawisk obserwowanych na częstotliwości 2800 MHz najwyższy poziom osiągnął wybuch z dnia 9 IX (313 su).

Z pewnością na większą uwagę zasługuje zespół zjawisk z dnia 23 IX. Jak donosi Światowe Centrum Danych z Boulder (USA) tego dnia w obszarze aktywnym o numerze 1024 nastąpił klasyczny rozbłysk protonowy. W promieniowaniu X wybuch nastąpił o godz. 941 UT (maksimum o 1021), wywołując znaczne wzrosty strumieni protonów i neutronów, obserwowane tak na powierzchni Ziemi jak i z pokładów sputników. Z tym wybuchem stowarzyszony był rozbłysk optyczny.
Obserwacje całkowitego zaćmienia Księżyca 16 września 1978 r.

Wielu obserwatorów czekało w całym kraju na to zjawisko. Tym razem, w odróżnieniu od kilku poprzednich zaćmień Księżyca, pogoda była znacznie lepsza, choć nie wszędzie na tyle dobra, aby można było cośolahwiek zobaczyć... Pochmurno było m. in. w wielu miejscowościach Polski zachodniej i południowej. Najważniejszy chyba wynik obserwacji — to stwierdzenie, że zaćmienie okazało się stosunkowo jasne.

Oto krótki meldunek * z dokonanych obserwacji:

Olsztyn — Zbigniew Szałkiewicz

Po deszczowym dniu niebo, wypogodziło się dopiero między 18 a 19h czasu wschodnioeuropejskiego (letniego). Przeprowadzono obserwacje ruchu cienia po tarczy Księżyca notując momenty znikania i ukazywania się kraterów:

<table>
<thead>
<tr>
<th>Wejście w cień:</th>
<th>Wyjście z cienia:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tycho — 19h37m01s</td>
<td>Posidonius — 22h22m05s</td>
</tr>
<tr>
<td>Copernicus — 19 43 47</td>
<td>Fracastor — 22 32 37</td>
</tr>
<tr>
<td>Erathostenes — 19 47 56</td>
<td>Goclenius — 22 39 19</td>
</tr>
<tr>
<td>Fracastor — 19 59 10</td>
<td></td>
</tr>
<tr>
<td>Plato — 20 04 31</td>
<td></td>
</tr>
<tr>
<td>Posidonius — 20 13 16</td>
<td></td>
</tr>
</tbody>
</table>

Zaćmienie całkowite mogło być obserwowane tylko do 21h15m, później ławica chmur przesłoniła Księżyca do 22h13m. W momencie maksimum fazy o 21h04m tarcza księżycowa miała barwę ciemnoceglastą z rudawym placem w rejonie płd.-wsch. Szczegóły topograficzne były rozróżniane z trudem. Jasność zaćmionego Księżyca oceniono w skali Danjona na 2.

Obserwacje przeprowadzono lunetą o pow. 40'X. Służba czasu metodą „oko-ucho” (sygnały czasu: Podebrady — CSRS).

Zakopane — Marek Zawilski

Silne zachmurnie nieba bardzo utrudniło obserwacje zaćmienia, choć piękna pogoda była 14, 15, 17 i 18 IX. Wejście w cień nie mogło być w ogóle obserwowane. Po raz pierwszy Księżyc ukazał się w przerwach między chmurami o 21h10m. Barwę tarczy określono wówczas jako blado-pomarańczową z wyraźnym pociemnieniem barwy mahoniowej w rejonie środka cienia. Widoczny był cały „krąg” Księżyca. Widzialność szczegółów na powierzchni (morza, kratery) — dobra w rejonie płn., b. słaba w rejonie płd. tarczy.

* Z. Szałkiewicz i J. Jużyczyński przesłali je pod adresem p. M. Zawilskiego (Łódź, Wojska Polskiego 72a, m. 4), który po dołączeniu własnych obserwacji nadał im poniższą formę; pozostałe raporty (J. Ulanowicz i M. Nowacki) przesłane były do redakcji Uranii.
W dalszym ciągu, na tle pochmurnego nieba, Księżyc ukazał się o 21h33m i 21h30m, przesłaniany jednak przez chmury. O 22h10m niebo zaczęło się przejaśniać i okresy widoczności Księżycu stawały się dłuższe, nie na tyle jednak, aby było możliwe przeprowadzenie obserwacji ruchu cienia. O 22h10m wyraźnie widoczna jeszcze była czerwonawa barwa cienia.

Łódź — Jarosław J u ż y c z y ń s k i

Chmury ustąpiły z nieboskłonu dosłownie na minuty przed rozpoczęciem zaćmienia częściowego i od tej pory niebo było bezchmurne, a widoczność b. dobra przy temperaturze powietrza ok. 10°C.

Podjęto próbę obserwacyjnego wyznaczenia kontaktów tarczy z ciemnem. Wyniki:

- Początek zaćmienia częściowego: 19h20m03s
- Księżyc cały w cieniu: 20h24m02s
- Księżyc wyłania się z cienia: 21h44m05s

Moment końca zaćmienia częściowego był trudny do dostrzeżenia z uwagi na silny już blask Księżyca w pełni. W czasie maksimum zaćmienia dała się łatwo zauważyć nierównomierną jasność tarczy Księżyca, mającego barwę czerwonawoszarą.

Przez lunetkę (d = 65 mm, f = 40 cm, pow. 40 ×) można było rozróżnić kratery: Kopernika, Keplera, Ptolemeusza, Arystarcha. Znacznie zmniejszony był kontrast między „morzami” a „lądami” księżycowymi. Czerwonawa barwa cienia widoczna była do 22h15m.

Ostrowiec Świętokrzyski — Jerzy U ł a n o w i c z

Kontakty cienia z poszczególnymi kraterami rejestrowano przy pomocy zegarka kieszonkowego (regulowanego z sygnałem radiowym) oraz stopera.

- Pierwszy kontakt z tarczą Księżyca: 19h23m
- z kraterami Kopernik i Tycho: 19h38m
- z kraterami Plato i Eratostenes: 20h01m
- z brzegami Morza Kryzysów: 20h11m i 20h15m
- Całkowite zaćmienie: 20h21m

W obserwacji brało udział 15 osób — członków oddziału PTMA wzgl. uczniów szkół ostrowieckich zrzeszonych w kole Młodych przy Oddziale.

Grudziądz — Maciej N o w a c k i

Jestem grudziądzkim miłośnikiem astronomii — zaczyna swój raport M. Nowacki — mam lat 14. Należę do Międzyszkolnego Koła Astronomicznego. Przesyłam ten raport z prośbą o ewentualne wykorzystanie w którymś z numerów „Uranii”.

pomysłu: zamiast opisu słownego posłużyłem się skalą barw (której oczywiście załączam), co — jak mi się wydaje — umożliwia dokładniejsze określenie koloru.*

Warunki atmosferyczne były wyjątkowo dobre, wyraźnie była widoczna Droga Mleczna, co w Grudziądzu jest rzadkością.
19h47m — zaciemniona część tarczy staje się widoczna gołym okiem.
19h52m — półtarczka lekko czerwieni (barwa 11).
20h04m — brzeg półtarczki zatąpi się za fragmentem Moonszkiej tarczy.
20h22m — brzeg półtarczki zatąpi się za fragmentem Moonszkiej tarczy.
20h38m — ciemna plama Oceanu Burz widoczna gołym okiem na tle tarczy. Jest tak ciemna, że nie można określić jej barwy — praktycznie czarna.
21h05m — zaćmienie całkowite.
22h04m — krater Tycho lekko jaśniejszy: dno jest jasne, wał ciemniejszy.
23h10m — gołym okiem Księżyc wydaje się „cały”, ale w lunecie jego brzeg jest jeszcze mętny.
23h21m — ustępują wszelkie wizualne ślady zaćmienia.

NOWOŚCI WYDAWNICZE

Sądzę, że powszechnie znanego i cenionego podręcznika akademickiego *Astronomia Ogólna*, pióra nestora astronomii polskiej profesora dra Eugeniusza Rybki, nie trzeba specjalnie przedstawiać. Obecne, szóste już wydanie stanowi w zasadzie wznowienie wydania piątego z roku 1975. Autor dokonał w nim niezbędnych, możliwych poprawek oraz aktualizacji danych. Niestety, z powodu nadmiernie długiego cyklu produkcyjnego część informacji przestała być, w momencie ukazania się książki, aktualna. Dotyczy to szczególnie rozdziału XIII zatytułowanego *Fizyka planety i ich księżyców*. Pamiętając nieścisłości w tekście, powstałe zresztą nie z winy Autora, prezentowana książka nadal służyć może młodym pokoleniom astronomów i miłośników astronomii, a to dzięki swemu encyklopedycznemu charakterowi. Chętnie sięgają po nią zarówno profesjonalni astronomowie, jako że w dwudziestu sześciu rozdziałach i trzech dodatkach zawarte są wszystkie podstawowe wiadomości astronomiczne poznając od elementarnych zjawisk na sferze niebieskiej a kończąc na kosmogonii i budowie Wszechświata. Dodatki nato­miast zawierają: zarys historii astronomii, stałe astronomiczne i wykaz gwiazdozbiórów. Nie brak również uwag na tak specyficzne tematy jak zagadnienie życia na planetach, możliwość podróży międzyplanetarnych i cywilizacji pozaziemskich. Podręcznik przedstawia także instrumenty i metody obserwacji — zarówno te klasyczne jak i współczesne.

* Autor załączył gamę barw i ich odcieni, które oznaczał liczbami od 1 do 12. Z przyczyn technicznych tabeli barw nie możemy w „Uranii” zamieścić; w związku z tym nie podajemy również pełnego opisu obserwacji (red.).
z wykorzystaniem techniki rakietowej umożliwiającej wynoszenie instrumentów obserwacyjnych poza atmosferę ziemską.

Ukazanie się nowego wydania Astronomii Ogólnej w nakładzie 14 850 egz. (przeznaczonych do sprzedaży) powinno umożliwić każdemu miłośnikowi astronomii (zrzeszonemu w PTMA czy interesującemu się astronomią samodzielnie) na uzupełnienie swej podręcznej biblioteczki astronomicznej o tę bez wątpienia konieczną pozycję.

T. ZBIGNIEW DWORAK

Przybyła nam nowa popularna pozycja z dziedziny historii astronomii polskiej. Książka T. Twarogowskiego w sposób łatwy i przystępny przedstawia życie i działalność Jana Heweliusza. Napisana żywo i ciekawie, miejscami w formie zbeletryzowanej, opatrzoną licznymi ilustracjami, jest lekturą lekką i przyjemną. Autor nie ogranicza się zresztą do osoby samego Heweliusza, lecz odmalowuje także tło naukowe tej epoki, jak również kreśli zarysy rozwoju astronomii do XVII w. Książka obfituje w liczne szczegóły, co z jednej strony jest jej zaletą, a z drugiej zaś — swego rodzaju słabym punktem, gdyż tu trafiają się liczne błędy, chociaż Autor na ogół korzystał z dobrych źródeł.

Na końcu książki Autor podaje spis dzieł Heweliusza. Jest to cenne, niestety i tu trafiają się błędy. Mianowicie Autor niewłaściwie tłumaczy „Annum Climactericus” jako rok przestępny (str. 201), gdyż słowo „climactericus” oznacza tyle co „zwrotny”, „krytyczny”, „przełomowy”. Zresztą dotyczy to roku 1685, a ten nie mógł być nawet przestępny, gdyż jego numer nie jest podzielny przez 4. Drugim błędem przekładu jest dwukrotne (w tłumaczeniu tytułów „Prodromus Astronomiae” i w katalogu gwiazd) przełożenie „ascensiones rectae” na „wschody proste” (str. 201). Tymczasem termin ten powinien brzmieć „rektascensje” względnie „wznoszenia proste”. Podobnie na tej samej stronie, przy tłumaczeniu tytułu katalogu, słowo „declinationes” jest tłumaczone nie jako „deklinacje” lecz „odchylenia”.

Pomimo tych niedociągnięć książka w arta jest przeczytana. Nie mniej jednak przy korzystaniu z niej należy zachować wielką ostrożność.

PRZEMYSŁAW RYBKA

Wiesław Bożym

L. Z.

KRONIKA PTMA

Pozdrowienia od miłośników zza oceanu

W kwietniu 1976 r. Oddział Poznański PTMA zorganizował ekspedycję „Zaćmienie 76” do Turcji. Wyprawa cieszyła się dużym zainteresowaniem nie tylko w kraju, ale także za granicą, o czym świadczą listy z pozdrowieniami i gratulacjami z różnych zakątków świata, zarówno od amatorów jak i od sekcji obserwacyjnych innych towarzystw.

Ponieważ korespondenci są zainteresowani nie tylko Ekspedycją, ale także działalnością naszego Towarzystwa, a swe pozdrowienia przesyłają dla wszystkich członków — czuję się w obowiązku przekazać je do publicznej wiadomości.

Przy okazji kilka dodatkowych informacji:
— Dr J. U. G u n t e r (1411 North Mangum Street, Durham, North Carolina 27701, USA) proponuje naszym miłośnikom abonowanie dwu-
miesięcznego biuletynu pt. „Tonight’s Asteroids”, organu Sekcji Małych Planet ALPO, poświęconego głównie asteroidom i kometom. Np. w posiadającym przeze mnie numerze 38 znajdują się: relacja z obserwacji zaćmienia Słońca, efemerydy komety Kohler, ciekawostki dotyczące 8 planetoid, ich efemerydy i pożycie naniesione na mapę nieba, odpowiedzi na listy. Istnieje możliwość abonamentu bezdewizowego, formę rewanżu należy ustalić z Dr Gunterem.

— Redakcja „Sky and Telescope" przesyła wszystkim członkom naszego Towarzystwa serdeczne pozdrowienia i wyraża zainteresowanie naszą działalnością.

— Pan Bennie Bilyen z USA (adres: Rt 4 Box 142 B, Crossville, Tenn. 38555), astronom-amator, pragnie korespondować z polskimi miłośnikami astronomii. Może ktoś z czytelników „Uranii” do Niego napisać?

HONORATA KORPIKIEWICZ

KALENDARZYK ASTRONOMICZNY

Opracował G. Sitarski Marzec 1979 r.

Słońce

W marcu Słońce przecina równik niebieski w punkcie równonocy wiosennej i wstępuje w znak Barana. Mamy wówczas zrównanie dnia z nocą i początek wiosny astronomicznej. W ciągu miesiąca dnia stale przybywa: w Warszawie 1 marca Słońce wschodzi o 6h24m, zachodzi o 17h14m, a 31 marca wschodzi o 5h15m, zachodzi o 18h7m.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>1</td>
<td>-21°55</td>
<td>-7°22</td>
<td>23</td>
<td>-24°76</td>
<td>-7°12</td>
<td>168°42</td>
</tr>
<tr>
<td>3</td>
<td>-22.04</td>
<td>-7.24</td>
<td>352.91</td>
<td>25</td>
<td>-25.04</td>
<td>-7.06</td>
<td>142.06</td>
</tr>
<tr>
<td>5</td>
<td>-22.51</td>
<td>-7.25</td>
<td>326.56</td>
<td>27</td>
<td>-25.30</td>
<td>-7.00</td>
<td>115.69</td>
</tr>
<tr>
<td>7</td>
<td>-22.95</td>
<td>-7.25</td>
<td>300.21</td>
<td>29</td>
<td>-25.52</td>
<td>-6.94</td>
<td>89.32</td>
</tr>
<tr>
<td>9</td>
<td>-23.37</td>
<td>-7.24</td>
<td>273.86</td>
<td>31</td>
<td>-25.72</td>
<td>-6.88</td>
<td>62.95</td>
</tr>
<tr>
<td>11</td>
<td>-23.76</td>
<td>-7.22</td>
<td>247.50</td>
<td>III 17</td>
<td>-25.90</td>
<td>-6.78</td>
<td>36.58</td>
</tr>
<tr>
<td>13</td>
<td>-24.12</td>
<td>-7.20</td>
<td>221.15</td>
<td>19</td>
<td>-26.04</td>
<td>-6.68</td>
<td>10.20</td>
</tr>
<tr>
<td>15</td>
<td>-24.46</td>
<td>-7.16</td>
<td>194.79</td>
<td>21</td>
<td>-26.16</td>
<td>-6.58</td>
<td>343.82</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
B₀, L₀ — heliograficzna szerokość i długość środka tarczy;
7d7h43m — heliograficzna długość środka tarczy wynosi 0°.
Księżyc

Tylko w pierwszych dniach i ostatniej dekadzie marca noce będą ciemne, bezksiężycowe, bowiem kolejność faz Księżyca jest w tym miesiącu następująca: pierwsza kwadra 5d17h, pełnia 13d22h, ostatnia kwadra 21d12h, nów 28d4h. Najdalej od Ziemi Księżyk znajdzie się 10, a najbliżej Ziemi 26 marca. Wędrując na tle gwiazd Tarcza Księżyca zakryje 5 marca Aldebarana, gwiazdę pierwszej wielkości w gwiazdozbiorze Byka; zjawisko to będzie u nas niewidoczne.

W nocy 13/14d marca nastąpi częściowe zaćmienie Księżyca. Zjawisko widoczne będzie w Europie, w Afryce, w Azji, w Australii, na Oceanie Indyjskim i Atlantyckim. Podczas największej fazy zaćmienia 0.88 średni tarczy Księżyca ukryte będzie w cieniu Ziemi.

Planety i planetoidy

W pierwszej połowie marca możemy obserwować Merkurego, jako gwiazdę około zerowej wielkości wieczorem, nisko nad zachodnim horyzontem. Wenus widoczna jest jeszcze nisko nad wschodnim horyzontem jako Gwiazda Poranna około —3.6 wielkości. Jowisz widoczny jest w pierwszej połowie nocy jako gwiazda około —2 wielkości w gwiazdozbiorze Raka; przez lunety możemy obserwować ciekawe zjawisko w układzie czterech najjaśniejszych księżyców Jowisza. Saturn widoczny jest przez całą noc w gwiazdozbiorze Lwa jako gwiazda +0.5 wielkości. Uran i widoczny jest w drugiej połowie nocy jako gwiazdka około 6 wielkości. Neptun wschodzi nad ranem w gwiazdozbiorze Wężownika, gdzie świadczy o 8 wielkości. Pluton widoczny jest prawie całą noc na granicy gwiazdozbiorów Panny, Wolarza i Warkocz Bereniki, ale dostępny jest tylko przez duże instrumenty (około 14 wielk. gwiazd.).

* * *

1d19d Saturn w przeciwstawieniu ze Słońcem względem Ziemi. Wieczorem księżyk 3 i jego cień przechodzą na tle tarczy Jowisza; obserwujemy koniec przejścia: księżyca 3 o 18h56m, a jego cienia o 22h16m.

4d Księżyk 1 i jego cień przechodzą na tle tarczy Jowisza. Księżyk rozpoznany przejście o 20h15m, a jego cień o 21h7m. Koniec przejścia księżyca 1 obserwujemy o 22h31m. W tym czasie księżyk 2 zbliża się do brzegu tarczy i o 23h4m nastąpi początek jego zakrycia przez tarczę planet. Cień księżyca 1 wędruje po tarczy do 23h23m.

5d8h Bliskie złączenie Księżyca z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiorze Byka; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w południowo-wschodniej Azji, na Północnym Pacyfiku i w Ameryce Północnej. Wieczorem księżyk 1 ukryty jest w cieniu planet; o 20h43m obserwujemy koniec zaćmienia tego księżyca.

6d Księżyk 2 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy koniec przejścia: księżyca o 20h43m, a cienia o 22h35m.

8d O 2h Merkury w największym wschodnim odchyleniu od Słońca (18°). Wieczorem księżyk 3 i jego cień przechodzą na tle tarczy Jo-
wiszą; obserwujemy o 22h26m koniec przejścia księżyca i o 22h41m początek wędrówki jego cienia.

12d O 19h19m obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety, a o 22h38m nastąpi koniec zaćmienia tego księżyca. O 21h57m na tarczy planety pojawi się cień księżyca 4. O 22h Saturn w złączeniu z Księżykiem w odl. 3°.

12d Księży 2 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy początek przejścia: księżyca o 20h16m, a cienia o 22h19m.

13/14d Częściowe zaćmienie Księżyca widoczne w Polsce. Podajemy momenty kolejnych faz zaćmienia:

13d19h12m Księży wchodzi w półcień Ziemi
13d20h30m wejście Księżyca w cień Ziemi
13d22h09m środkowa faza zaćmienia
13d23h48m wyjście Księżyca z cienia Ziemi
14d01h06m Księży wychodzi z półcienia Ziemi

14d16h Merkury nieruchomy w rektaascencji.

18d12h Uran w złączeniu z Księżycem w odl. 4°.

19d O 20h25m obserwujemy koniec zaćmienia 3 księżyca Jowisza, a o 21h9m początek zakrycia księżyca 1 przez tarczę planety.

20d19h Neptun w złączeniu z Księżycem w odl. 4°. O 19h25m na tarczy Jowisza pojawia się cień księżyca 1, a o 19h27m księżyca 4 kryje się za brzegiem tarczy planety. Księży 1 przechodzi na tle tarczy do 20h36m, a jego cień do 21h41m. O 22h42m rozpoczyna przejście na tle tarczy księżyca 2.

21d6h22m Słońce wstępuje w znak Barana, jego długość ekliptyczna wynosi wówczas 0°. Mamy początek wiosny astronomicznej.

22d Księży 2 Jowisza ukryty jest w cieniu planety; o 22h5m nastąpi koniec zaćmienia tego księżyca.

23d11h Neptun nieruchomy w rektaascencji.

24d15h Dolne złączenie Merkurego ze Słońcem.

25d10h Wenus w złączeniu z Księżycem w odległości 2°.

26d O 2h Jowisz nieruchomy w rektaascencji. Wieczorem dwa księżyce Jowisza kryją się za tarczą planety. O 19h40m nastąpi koniec zakrycia księżyca 3, a o 20h48m początek zaćmienia tego księżyca. O 22h59m nastąpi początek zakrycia księżyca 1.

27d3h Mars w złączeniu z Księżyłem w odl. około 1°. Księży 1 i jego cień przechodzą na tle tarczy Jowisza; początek przejścia księżyca o 20h11m, a cienia o 21h20m.

28d Księży 1 przechodzi za tarczą i przez strefę cienia Jowisza. O 20h57m obserwujemy koniec zaćmienia tego księżyca.

29d O 19h29m księżyca 2 Jowisza ukryje się za tarczą planety, natomiast do 20h41m na tarczy widoczny jest cień księżyca 4.

Minima Algola (beta Perseusza): marzec 3d0h5m, 5d20h55m, 8d17h40m, 20d5h0m, 23d1h55m, 25d22h40m, 28d19h30m.

Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim.
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.
S. Lubertowicz — Time in philosophy and physics.
Interview with Prof. J. S. Szkłowski.
New Books.
Astronomical Calendar.

СОДЕРЖАНИЕ

М. Хеллер — Эволюция Космоса и космологии.
С. Любертович — Время в философии и физике.
Интервью с проф. И. С. Шкловским.
Хроника: Орбитальный космологический тест — Эволюция галактик — Массы компонентов Альгола — Инфракрасная астрономия.
Наблюдения: Наблюдения лунного затмения 16 сентября 1978.
Новые книги.
Астрономический календарь.

OGŁOSZENIA

Sprzedam teleskop amatorski

Wacław Zawadzki
ul. K. Marksa 72/13
32-100 Proszowice

Kupię zwierciadło ⌀ 150 lub ⌀ 180

Franciszek Zieliński
ul. Staszica 9
78-520 Złocieniec

Odsprzedam refraktor + statyw, ⌀ 66, z + 12,4 w. gw.

Jan Kwiatkowski
ul. Słowackiego 13
37-500 Jarosław

Sprzedam teleskop zwierciadlany typu Casegrain + Newton ⌀ 250 mm + statyw paralaktyczny

Józef Gawryła
46-211 Kujakowice Dolne
SPIS TREŚCI

Michał Heller — Ewolucja Kosmosu i kosmologii.

Honorata Korpikiewicz — Raport o stanie badań krateru meteorytowego we Fromborku.

Marek Zawilski — Częściowe zaćmienie Księżyca 13/14 marca 1979 roku.

Obserwacje: Komunikat CSOS nr 10/78 — Raport X 1978 o radiowym promieniowaniu Słońca — 20 lat radiowej służby Słońca w Toruniu — Relację o stanie badań nad domniemanym kraterem meteorytowym „Frombork” ilustrujemy zdjęciami lotniczymi terenu. Zamieszczamy także zdjęcie Nowej w Łabędziu, wykonane w Chorzowie wkrótce po jej odkryciu.

Ze zjawisk na marcowym niebie zasługujących na szczególną uwagę wymienić należy: częściowe zaćmienie Księżyca (13/14 III) i bliskie złączenie Księżyca z Aldebaranem (4/5 III). Warto także zwrócić uwagę na złączenia Księżyca z Wenus (25 III) i z Marsem (27 III).

W ciągu marca nastąpi 30 godzinnych obserwacji zjawisk w układzie księżyców Jowisza, a w kwietniu — 49, których momenty z dokładnością do minut podane są w „Kalendarzu”. Obserwacje te stanowią doskonały trening dla prowadzących obserwacje astronomiczne i mogą być przydatne dla skontrolowania „lokalnych służb czasu. Prosimy o nadsyłanie wyników.

Komunikat Głównej Rady Naukowej PTMA.

Kronika PTMA: Komunikat Oddziału Warszawskiego PTMA.

Kalendarz astronomiczny.

Pierwsza i czwarta strona okładki: Zdjęcie lotnicze krateru meteorytowego „Frombork”. Pierwsze — wykonane z wysokości 250 m, przedstawia centralną część krateru z niewielkim „jejziorkiem”; zapewne miejsce spadku meteorytu. Drugie — wykonane z 500 m, obejmuje teren krateru przedstawiony również na planie (str. 75). Na zdjęciach widoczne korony i cienie drzew oraz ślady śniegu. Zdjęcia publikowane za zgodą Dowództwa Marynarki Wojennej.

Druga strona okładki: Nova Cygni 1978 (patrz „Kronika”). Zdjęcie wykonane 20. 10. 1978 r. o 18h 10m UT przy użyciu astrokamery Zeissa (średn. 20 cm, ogn. 10 cm) sprzężonej z refraktorem (50 cm, 450 cm) w obserwatorium astronomicznym Planetarium Śląskiego w Chorzowie. Czas ekspoz. 15 minut, klisza ORWO ZU-1. Jasność fotograficzna Nowej ok. 9m. Zdjęcie wykonali I. Włodarczyk.

Trzecia strona okładki: Topograficzna mapa Phobosa (półkula północna i południowa, równik pokrywa się z płaszczyzną orbity, południk zerowy skierowany w stronę Marsa), wykonana na podstawie plastycznego modelu (Ralph Turner) realizującego obserwację Marinersa 9 z 1971 r. Linie cienkie oznaczają warstwice co 100 metrów, grube — kontury kraterów. Największe wzniesienie wynosi 1,8 km, największe zagłębie — 1,6 km od poziomu średniej elipsy. Źródło: Sky and Telescope, vol. 56, nr 6, 1978.
EWOLUCJA KOSMOSU I KOSMOLOGII

IX. Dyskusja o ewolucji Wszechświata

1. Teoria i praktyka nauki

Idea ekspandującego Wszechświata ogromnie poszerzyła — i to w dosłownym tego słowa znaczeniu — badawcze horyzonty nauki. Nic dziwnego, że dyskusja na ten temat zataczała coraz szersze kręgi. Były to lata intensywnej działalności Koła Wiedeńskiego. Według filozofów i naukowców należących do tego ugrupowania, wszystko, co nie da się sprowadzić do bezpośrednich danych doświadczalnych, należy usunąć z nauki jako pozbawioną sensu gadaninę. Hipoteza ekspandującego Wszechświata wykraczała daleko poza bezpośrednie dane obserwacyjne; co więcej — wydawała się pozostawać w sprzeczności z niektórymi, znanimi podówczas, wynikami. Jak to dobrze, że twórcy współczesnej kosmologii nie byli zarażeni neopozytywistycznym programem z Wiednia: nauka byłaby dziś uboższa o jeden rozdział!

W 1931 roku Towarzystwo Brytyjskie (The British Association) zorganizowało wielką dyskusję na temat „Ewolucja Wszechświata”. W trakcie dyskusji nie przestrzegano przesadnych rygorów, dyskutowano po trosze o wszystkim: o matematyce, o ewolucji gwiazd, o termodynamice, o promieniach kosmicznych, o teorii ewolucji biologicznej, o świadomości, i o wielu innych zagadnieniach filozoficznych. To była okazja do wymiany myśli i konfrontacji poglądów. Historia uczy, że atmosfera swobodnej dyskusji daje nauce więcej niż sztywne przepisy metodologów.

Jako pierwszy zabrał głos:

2. Sir James Jeans

Ponieważ Wszechświat składa się z ogromnej liczby atomów, rządzi w nim — praktycznie rzecz biorąc — sztywny determi-
nizm. Oznacza to, że „końcowy” stan Wszechświata jest zako­
dowany w jego obecnym stanie. „To, co nazywamy ewolucją,
jest jak pociąg toczący się po jednotorowym szlaku bez ja­
kichkolwiek zwrotnic”. Ale rzecz w tym, że takich jednotoro­
wych linii bez rozwideń jest wiele i nie wiemy, którą z nich
obrał nasz Wszechświat. Jednakże mimo to, dzięki drugiej za­
asadzie termodynamiki, możemy wnioskować coś o końcowym
stanie Wszechświata. Będzie to stan odznaczający się maksy­
mum entropii.

Wzrost entropii we Wszechświecie jest związany z tenden­
cją do coraz bardziej równomiernego rozkładu promieniowa­
nia w przestrzeni. Obecnie różne temperatury są jeszcze bar­
dzo duże: w przestrzeniach międzygwiezdnym kilka stopni
w skali bezwzględnej, na powierzchni Słońca około 6000 stop­
ni, a w jego wnętrzu prawdopodobnie 40 lub 50 milionów
stopni. Entropia wzrasta wyrównując te różnice. Jesteśmy je­
szcze odlegli od stanu równowagi termodynamicznej, ale zbli­
zamy się do niej nieuchronnie.

Zdaniem Jeansa, istotną rolę w „termodynamice Wszech­
świata” odgrywa tzw. promieniowanie kosmiczne, którym Zie­
mia jest nieustannie naświetlana, a które pochodzi z odległych
przestrzony kosmicznych. Jeans przypuszcza, że promienie
kosmiczne rodzą się z anihilacji atomów wodoru i helu, czyli
z ich całkowitej przemiany na promieniowanie. Jeśli ta inter­
pretacja jest prawdziwa, to wraz z „degradacją energii”, de­
gradacji ulega materia, „gdzie elektrony i protony należy uwa­
żać za skondensowane zbiorniki energii”.

Prawdopodobnie ten sam mechanizm (anihilacja materii)
produkuje energię w gwiazdach.

Z kolei produkcja energii przez gwiazdy wiąże się z nie­
dawno odkrytym rozszerzaniem się Wszechświata (jeśli to odkrycie uznać już za fakt dokonany). „Jeżeli Wszechświat się
rozszerza, gwiazdy po prostu wylewają swoje promieniowanie
w zbiornik bez dna; przestrzeń, która ma się wypełnić promie­
niowaniem, ciągle zwiększa swoją objętość. Całkowita ta ener­
gia Wszechświata nieustannie się zmniejsza, ponieważ promie­
niowanie wykonuje pracę, wywierając ciśnienie na «brzegi»
Wszechświata — dokładnie tak gaz traci energię i oziębia się,
gdy ulega rozszerzaniu i naciska na brzegi swojego «wszech­
świata» (tzn. zbiornika, w jakim jest zawarty). A zatem masa
w gwiazdach nieustannie zmienia się w energię, podczas gdy
energia, z kolei, zmienia się w dodatkową objętość Wszech­
świata”.

3. Georges Lemaitre

Przede wszystkim rozszerzania się Wszechświata nie należy traktować tylko jako prawdopodobnej hipotezy. Nawet gdybyśmy nic nie wiedzieli o zjawisku Dopplera i przesunięciach czerwieni w widmach galaktyk, w oparciu o ogólną teorię względności można by wykazać, że Wszechświat musi się rozszerzać. Już Eddington zwrócił uwagę na to, że statyczny model Einsteina nie jest stabilny: jakiekolwiek zaburzenie może go wtrącić albo w stan kurczenia się, albo rozszerzania. Wiemy, że we Wszechświecie istnieją kondensacje materii: materia jest skondensowana w gwiazdach, gwiazdy grupują się w galaktyki. Lemaitrowi udało się niedawno wyliczyć, że jakiekolwiek zagęszczenie pierwotnie równomiernie rozmieszczonej materii w statycznym świecie Einsteina, zaburza równowagę tego modelu i zapoczątkowuje jego rozszerzanie się.

Prawda, że rozszerzanie się Wszechświata sugeruje zbyt krótką skalę czasową jego ewolucji. Nie dowodzi to jednak fałszywości nowej kosmologii, lecz skłania tylko do poszukiwania nowej koncepcji początku. Ewolucja rozpoczynająca się od tego początku musi być wystarczająco szybka. „Potrzeba nam »fajerwerkowej« teorii ewolucji. Ostatnie dwa miliardy lat są powolną ewolucją; ale są one popiołami i dymem jasnego i bardzo gwałtownego fajerwerku”.

I być może, że tutaj Jeans utrafił w sedno. Lemaitre przypuszcza, że promienie kosmiczne są pozostałością po owym „pierwotnym wybuchu”. Badając je możemy pokusić się o rekonstrukcję wczesnej historii Wszechświata. Ale do tego niezbędna jest zaawansowana znajomość fizyki atomowej. „Kosmogonia jest fizyką atomową w wielkiej skali przestrzeni i czasu”.

Lemaitre ma już w zanadrzu „nową kosmogonię”, jest nią

Do zagadnień kosmogonii nawiązał następny mówca:

4. Wilhelm de Sitter

Poruszył on zagadnienie kluczowe — problem skali czasu. Wiadomo, że ewolucja kosmiczna (Hubbleowska ucieczka galaktyk) odbywa się zbyt szybko w porównaniu z ewolucją poszczególnych ciał niebieskich, rekonstruowaną przez różne dyscypliny astronomiczne. Wiek Wszechświata, tzn. okres czasu liczony od „początku”, czyli od momentu, poza który nasze kosmologiczne teorie nie sięgają, jest krótszy od wieku poszczególnych obiektów astronomicznych. Lemaitre w swojej pracy z 1927 r. zaproponował wyjście z tego dylematu. W Lemaitreowskim rozwiązaniu tempo ekspansji Wszechświata, gdy cofamy się wstecz, zwalnia logarytmicznie i „początek” nieucieka do minus nieskończoności. Ale jest to tylko pozorny unik a nie rozwiązanie trudności. Wraz z logarytmicznie zwalniającą ekspansją, zwolnieniu ulegną wszystkie procesy fizyczne i w logarytmicznej skali rozszerzania się Wszechświata nie upakuje się więcej procesów niż w zwykłej, Hubbleowskiej ekspansji.

Jest rzeczą naturalną poszukiwać związków między ewolucją Wszechświata jako całości a ewolucją poszczególnych obiektów astronomicznych, ale de Sitter okazał się pod tym względem pesymistą. „Jeśli chcemy skonstruować — pisze on — przyczynowy związek między początkiem ekspansji i zdarzeniami, które powinny były wystąpić we wczesnych stadiach ewolucji układów gwiazd — takich, jak na przykład pierwsze tworzenie się kondensacji (...) — nieuniknienie napotkamy trudność polegającą na tym, że czas, jaki upłynął od tych dwu początków jest kilka tysięcy razy dłuższy w jednym lanachku zdarzeń niż w drugim. Nie sądzę, by kiedyś było możliwe pogodzenie tych dwu skal czasu”.

A więc, według de Sittera, należy wyróżnić dwie ewolucje: globalną ewolucję Wszechświata i partykularne ewolucje poszczególnych jego części i te dwie ewolucje nie mają ze sobą nic wspólnego, odbywają się nawet w różnych czasach, są mierzone nieporównywalnymi ze sobą zegarami.

Historia jednak uczy, żeby proroctw nie wypowiadać zbyt
zdecydowanie. I tym razem proroctwo de Sittera się nie speł­niło. Ok. 20 lat po zebraniu Towarzystwa Brytyjskiego okaza­ło się, że wyznaczanie wartości stałej Hubble’a opierało się na błędnie i w rzeczywistości paradoks skali czasu nie istnieje. Historia stałej Hubble’a jest niezmiernie pouczająca. Ma w tej historii swoją pozycję także

5. Sir Artur Eddington,
który był następnym mówcą po de Sitterze. Stanowisko Ed­dingtona było krańcowo przeciwe od stanowiska zajmowane­go przez de Sittera. Eddington, w bardzo zwięzły sposób, przedstawił wyniki swojej nowej teorii, według której pomię­dzy strukturą świata w skali atomowej a globalną strukturą Wszechświata jako całości zachodzą bardzo istotne związki. Przy pomocy swojej teorii Eddington wyliczył, że we Wszech­świecie znajduje się $1,29 \times 10^{78}$ elektronów, a wartość stałej Hubble’a musi się równać 528 km/s Mpc. Zwrócmy uwagę, że ta ostatnia wartość wynika z teorii Eddingtona a nie z aktual­nych pomiarów; aktualne pomiary dawały podówczas wartości 430—550 km/s. Mpc. Wynik Eddingtona zgadzał się więc z aktualnymi obserwacjami. I tu właśnie widzimy, jak bardzo twórcza wyobraźnia teoretyków jest uzależniona od wyników, które pragną osiągnąć. Gdy dwadzieścia lat potem poprawio­no metody pomiarów i okazało się, że wartość stałej Hubble’a jest prawie dziesięciokrotnie mniejsza, Eddington już nie żył i nie mógł dopasować swojej teorii do nowych wyników.

6. Milikan i Milne
Następne dwie wypowiedzi dotyczyły zagadnień obserwacyj­nych. Millikan był uznany specjalistą od promieni kosmicz­nego. W długim, starannie przygotowanym przemówieniu przedstawił on historię badań promieni kosmicznych oraz stan aktualnych prac eksperymentalnych, prowadzonych w tej dziedzinie zarówno przez siebie, jak i innych fizyków. Sugesti­a Lemaitre’a, że promieniowanie kosmiczne może mieć duże znaczenia dla kosmologii, z pewnością wywarła wrażenie na Millikanie. Ale Millikan był przede wszystkim eksperymenta­torem, zreferował wyniki doświadczalne i stwierdził — w sta­rannie dobranych, wyważonych zdaniach — że jest wysoce prawdopodobne, iż promieniowanie kosmiczne niosą informację o procesie tworzenia się struktur atomowych w bardzo odleg-
łych obszarach. Niektóre rozważania Millikana na ten temat bardzo przypominają dzisiejsze teoretyczne analizy tzw. promieniowania tła.

7. Inni mówcy

W swojej końcowej partii raporty z dyskusji dotyczą raczej filozoficznych refleksji na marginesie czy też na tle poprzednio roztrząsamych zagadnień. Ograniczmy się tylko do kilku fragmentów.

Generał J. C. Smuts: „Nie zgadzam się z tymi, którzy twierdzą, że najnowsze zdobycze fizyki nie mają wielkiej wartości dla filozofii. Najbardziej twórczy myśliciele — filozofowie w przeszłości z reguły byli przesiąknięci nauką swoich czasów, która dawała substancję i ciało ich filozofiom i należy oczekiwać, że najnowsze, rewolucyjne osiągnięcia fizyki wyicionesą się głęboko na naszym poglądzie na świat i na naszych filozoficznych przekonaniach. (...) Jeżeli stare siły Natury, takie jak grawitacja i może nawet elektromagnetyzm, są tylko (jak uczy Einstein) krzywiznami czasoprzestrzeni, jeżeli sama materia jest w istocie tylko taką krzywizną, czujemy się skłonni traktować czasoprzestrzeń jako podstawową strukturę świata, a nie jako zwykły matematyczny symbolizm. Czasoprzestrzeń staje się czymś jak dawny eter, substrat lub matryca, z której pochodzą wszystkie fizyczne zróżnicowania”.

W tym cytacie z łatwością rozpoznajemy późniejszy (z lat 60-tych) program Johna Archibalda Wheelera, znany pod nazwą programu geometricodynamiki: wszystko, co istnieje, da się sprowadzić do odkształceń i fluktuacji pustej czasoprzestrzeni.

„Wydaje się, że musimy dążyć do rzeczywistego sprzężenia pojęć teorii względności z pojęciami kwantowymi, chyba że
przyjmuje, iż oba te rodzaje pojęć są nadal tymczasowe i że bardziej obszerna i prawdziwsza unifikacja ma jeszcze nadejść”.

„Korzenie życia i umysłu są wrośnięte głęboko w podstawową strukturę rzeczywistości, a nie są tylko osobliwymi zjawiskami o nieoczekiwany charakterze, pojawiającymi się przypadkowo w późniejszych fazach ewolucji”.

Ostatnim mówcą był Sir Oliver Lodge. Zwrócił on uwagę na to, że Sekcja A Brytyjskiego Towarzystwa, grupująca tylko przedstawicieli nauk fizycznych, sama, bez pomocy innych sekcji nie rozstrzygnie zagadki Wszechświata. We Wszechświecie występuje fenomen życia i myśli, który wykracza poza kompetencje fizyki. Jeśli nawet zjawiska życia i myśli dałyby się sprowadzić do czystej fizyki, to Sekcja A nie potrafi tego udowodnić bez czynnej współpracy przedstawicieli innych sekcji. Problem Wszechświata jest zagadnieniem interdyscyplinarnym.

8. Hipoteza fizycznego Wszechświata

Sprawozdanie z posiedzenia Towarzystwa Brytyjskiego, opublikowane w dodatku do „Nature”, zostało zaopatrzone we wstęp, pod którym widnieją inicjały H. D. kryjące w sobie prawdopodobnie imię i nazwisko Herberta Dingle. Wstęp ten zawiera głębokie i interesujące myśli. Można go potraktować jako jeszcze jeden głos w dyskusji.

Według autora wstępu najistotniejszą kwestią poruszoną w dyskusji był problem stosunku pomiędzy fizycznym Wszechświatem a życiem i myślą. Prawda, że nie jest to zagadnienie
leżące w kompetencji Sekcji A Towarzystwa, ale omawiając problem ewolucji Wszechświata nie sposób poza te kompetencje nie wykroczyć. Niemniej jednak trzeba — być może, że tylko we wstępnej, tymczasowej fazie badań — wydzielić sztucznie „Wszechświat fizyczny” od Wszechświata „rozważanego w całym bogactwie wszyskich jego zjawisk i procesów (łącznie z życiem i myślą) i badać Wszechświat fizyczny przy pomocy metod stosowanych zwykle w fizyce. Takie postawienie sprawy jest warunkiem postępu. Ale jest to hipoteza — hipoteza fizycznego Wszechświata. „„Fizyczny Wszechświat” jest wygodną fikcją dla dalszych badań, nie mamy prawa uważać go za nic innego”.

Dalsze postępy kosmologii potwierdziły słuszność tej „fikcji”. Możemy dziś powiedzieć za D. W. Sciamą [2], że jednym z najważniejszych osiągnięć współczesnej kosmologii jest wykazanie istnienia Wszechświata, w tym sensie, że — wbrew przedeinsteinowskim paradoksom kosmologicznym — Wszechświat można traktować jako jeden, istniejący układ fizyczny, poddający się badaniom metodami fizycznymi. To jest właśnie hipoteza fizycznego Wszechświata, dzięki której kosmologie można dziś uważać za naukę empiryczną. Zagadnienia życia i myśli w skali kosmicznej są zagadnieniami o niezwykłej wadze, ale ciągle jeszcze leżą one poza granicami ścisłej nauki.

9. Pytania dla Wyroczni

James Jeans zakończył swoją wypowiedź na zebraniu Towarzystwa Brytyjskiego następującymi słowami:

Załóżmy, że jakaś nieomylna wyrocznia zechciałaby udzielić każdemu z nas odpowiedzi „tak” lub „nie” na dwa naukowe pytania. Osobiście, myślę, że jako moje pytania wybrałbym: (1) Czy główna energia promieniowania gwiazd pochodzi z anihilacji materii? (2) Czy Wszechświat rozszerza się w temacie wskazywanym przez widma mgławic?”.

Georges Lemaître podjął ten sam ton:

„Gdybym miał postawić jakieś pytanie nieomylną wyrocznią, o której wspomniał Sir James Jeans, myślę, że wybrałbym następujące: «Czy Wszechświat był kiedyś w spoeczynku, czy też jego ekspansja trwała od początku?». Ale myślę, że poprosiłbym wyrocznię o nieudzielanie odpowiedzi, aby nie pozbawić przyszłych pokoleń przyjemności poszukiwania i znajdowania rozwiązań”.
RAPORT O STANIE BADAŃ KRATERU METEORYTOWEGO WE FROMBORKU

Do niedawna uważany za największy krater Wilkes Land na Antarktydzie o średnicy 240 km musiał ustąpić pierwszeństwa na liście największych kraterów o średnicy 440 km, jakim okazała się... część Zatoki Hudsona w Kanadzie! Nie wykluczone, że w przyszłości jeszcze jakiś „dobrze poznany” ziemski obiekt okaże się kraterem meteorytowym. Do podejrzananych należy m. in. północną część Morza Kaspijskiego.

We wspomnianym katalogu Classena można pod numerem 19 znaleźć obiekt, którego jeszcze do niedawna nie było w katalogach kraterów: Morasko, Poznań — Poland, φ = 52°29’, λ = 16°54’ E, liczba kraterów — 8.

stwierdzenie, że nastąpiło to jeszcze przed utworzeniem "rezerwatu "Meteoryt Morasko"...

Krater Morasko nie są jednak jedynymi kraterami na terenie naszego kraju. Scisłej — nie są jedynymi znawanymi kraterami, bo kraterów, które uchodzą jeszcze uwadze obserwatorów, jest zapewne więcej. Niedawno przeprowadzono badania nad nowoodkrytym kratem meteorytowym we Fromborku.

Opowiadamy w paru słowach o historii odkrycia i badań krateru, która jest o tyle ciekawa, że rozwiązanie zagadki jego genezy jest w pełni osiągnięciem Polskiego Towarzystwa Miłośników Astronomii.

Pierwszy powrócił uwagę, około 1960 roku, na rozległe zagłębienie terenu zasłużony członek naszego Towarzystwa, nieustrudzony badacz meteorytów dr Jerzy Pokrzywnicki. Odbierony niezwykłą intuicją wysunął on przypuszczenie, że fromborskie zagłębienie terenu jest kraterem pometeorytowym. Zwrócono uwagę na fakt, że dr Pokrzywnicki był również pierwszym badaczem kraterów w Morasku. We Fromborku nie przeprowadzał jednak żadnych badań (w każdym razie o takowych nic nie wiadomo) i sprawa poszła w zapomnienie. I prawie jeszcze długo fromborski krater byłby uważany za zwykle połodowcowe zagłębienie terenu, gdyby nie zainteresował się nim inny miłośnik astronomii, kierownik Dostrzenialni Wieża Wodna — mgr Władysław Michalunio z Fromborka.

Władysław Michalunio przeprowadzał wywiady na temat dziwnego obiektu i zaczął informacji o rzekomych meteorytach, które miały spaść we Fromborku. Poszukiwania meteorytu we wnętrzu domniemanego krateru nie dały oczekiwanej rezultatu. Nie świadczyło to zresztą przeciwko meteorytowemu pochodzeniu krateru — powszechnie wiadomo, że wokół bardzo dużych kraterów na ogół nie znajdujemy odłamków bryły, która na skutek wysokiej temperatury wytworzonej podczas wybuchu wyparowuje czasami nawet całkowicie.

Traf chciał, że autorka niniejszego artykułu (która również uważa się za miłośniczkę astronomii) przebywała dość często we Fromborku w związku z akcjami popularyzatorsko-śkołowniowymi organizowanymi przez nasze Towarzystwo. W 1970 r. mgr Michalunio zainteresował mnie dziwnym obiektem leżącym w odległości ok. 2 km na południe od miasteczka, relacja—

* Urania 1977, 1 str. 25.
nując dotychczasowy stan poszukiwań. Ponieważ w tym czasie odbywał się turnus szkoleniowo-obserwacyjny PTMA, który zgromadził uczestników z całej Polski — zorganizowaliśmy systematyczne poszukiwania ewentualnych bryłek meteorytu. Penetracja terenu o powierzchni ok. 1 km² trwała kilka dni,
on obszar o średnicy około 250 metrów, od południa ograni­czony wałem przechodzącym przez teren żwirowni, od strony zachodniej wychodzący poza drogę do Fromborka; od północy wał krateru praktycznie nie istnieje. Na dnie obiektu znajduje się mały zbiornik wody o głębokości ok. 1,5 m, z otaczającą go kępą drzew. Profil krateru określają naniesione na planie war­stwice: różnica wysokości między lustrum wody w zbiorniku a południowym wałem wynosi 24 metry.

Obiekt znajduje się, podobnie jak kratery Morasko, w re­jonie uformowanym przed tysiącami lat przez działalność lo­dowca. Istniały więc podobne kłopoty interpretacyjne, wyma­gające ostrożności i sceptycyzmu. Czy zagłębienie nie może być pochodzenia polodowcowego?

Jego kształt oraz różnice wysokości północnego i południo­wego wału wskazywałyby na pochodzenie meteorytowe i kie­runek lotu bryły z północy na południe. Czy jednak taki kształt krateru nie może być dzielem przypadku (a ścisłej — lodowca)? Jest to wprawdzie mało prawdopodobne, ale możli­we. Czy więc na podstawie tak skąpych danych można twier­dzić, że krater jest pochodzenia meteorytowego? Oczywiście — nie. Powinien on spełniać jeszcze inne warunki, które omawia­liśmy w cytowanej wyżej „Uranii”. Ogólnie mówiąc — trudno jest stwierdzić, że dana, względnie regularna dziura w ziemi jest kraterem, natomiast prawie niemożliwe jest stwierdzenie, że owa dziura kraterem nie jest. Wiąże się to z faktem, że pewne elementy, typowe dla kraterów wybuchowych, jak od­łamki meteorytu, impaktyty, pył — mogą, ale wcale nie mu­sza występować w kraterach. Jeżeli występuje — sprawa jest jasna. Ale jeśli nie — to nic jeszcze z tego nie wynika. Brak odlamków może być spowodowany parowaniem przy wybu­chu lub wietrzeniem (dla meteorytów kamiennych), niemożli­wość wyseparowania pyłu — niską zawartością żelaza w pyle, itd.

Meteoryt Morasko był żelazny, więc wyseparowanie pyłu miało szanse powodzenia. W przypadku Fromborka nie znaliśmy klasy hipotetycznego meteorytu. Jeśli był kamienny (lub nie było go wcale) każda próbka ziemi powinna zawierać taką ilość pyłu meteorowego, jaka jest zawarta w tzw. promienio­waniu, czy raczej zapyleniu tła. A jeśli nie?

Autorka pobrała ok. 80 próbek gruntu z okolicy krateru i wyseparowała z nich frakcje magnetyczne oraz wykonała analizę pyłu meteorytowego. Ilość pobranych 80 próbek nie jest wcale imponująca w porównaniu z przeanalizowanymi
500 próbkami z Moraska, zważmy jednak, że równa się ona przewiezieniu około 150 kg ziemi z Fromborka do Poznania, i to na własnych płcach (jak widać meteorytolog powinien być kulturystą). Trzeba było również poświęcić prawie 200 godzin na analizy mikroskopowe...

Analizy pyłu, których wyniki zostaną zamieszczone w The Astronomical Reports, wykazały wyraźną koncentrację pyłu wokół hipotetycznego kierunku lotu, oszacowanego na podstawie kształtu krateru. Jednocześnie zawartość pyłu w gruncie jest wyraźnie większa od zapylenia tła, do którego zbliżają się próbkibrane z południowej strony krateru. Taka ilość i rozkład pyłu nie mogą być przypadkowe i wskazują niezbiecie na meteorytowe pochodzenie krateru.

Ciekawe są wyniki analizy chemicznej zebranego pyłu, wykonanej przez mgr Elżbietę Adamskę z Uniwersytetu Adama Mickiewicza w Poznaniu. Skład poszczególnych pierwiastków kształtuję się następująco:

<table>
<thead>
<tr>
<th>Pierwiastek</th>
<th>Koncentracja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>58%</td>
</tr>
<tr>
<td>Ni</td>
<td>3%</td>
</tr>
<tr>
<td>Co</td>
<td>2%</td>
</tr>
<tr>
<td>Si</td>
<td>15%</td>
</tr>
<tr>
<td>reszta</td>
<td>22%</td>
</tr>
</tbody>
</table>

Wskazywałoby to na meteoryt żelazo-kamienny, a nie żelazny, jak podawał Pokrzywnicki. Nie wykluczone jednak, że powyższa analiza jest zafałszowana zanieczyszczeniami pobranego pyłu przez składniki gleby. Należy zauważyć, że nikt jeszcze nie wykonywał analiz porównawczych meteorytu wraz z analizą pyłu wokół miejsca jego spadku.

Na podstawie kształtu krateru oraz rozkładu pyłu można było określić przybliżony kierunek lotu „Meteorytu Frombork”. Bryła poruszała się z północy na południe pod niewielkim kątem do powierzchni ziemi (ok. 5—10°).

Jesienią 1977 roku dzięki pomocy i inicjatywie doc. dr Andrzej Lisickiego z Wyższej Szkoły Morskiej w Gdyni udało się Głównej Radzie Naukowej PTMA, która patronowała badaniom krateru, nawiązać kontakt z Dowództwem Marynarki Wojennej w Gdyni, które zadeklarowało się wykonać nieodpłatnie fotografie lotnicze krateru. Fotografie wykonano z pokładu samolotu AN w grudniu 1977 r. i lutym 1978 r. komandor porucznik Marian Próchniak. Dzięki uprzejmości prorektora Uniwersytetu Adama Mickiewicza, dyrektora Instytutu Geografii prof. dr. hab. Stefana Kozarskiego, został nam udo-
stępniony stereoskop Zakładu Fotointerpretacji, przy pomocy którego wykonano dokładny plan krateru.

Wstępna analiza zdjęć przeprowadzona przez specjalistę z zakresu fotointerpretacji dr. Jerzego Cierniewskiego z Akademii Rolniczej w Poznaniu, potwierdziła wnioski o wybuchowym pochodzeniu krateru. Jednocześnie powstał szereg problemów związanych z kraterem, dla których rozwiązania będą w przyszłości potrzebne badania geomorfologiczne (np. stwierdzenie, czy Góra Żórawia, znajdująca się na południu krateru, jest kulminacją moreny, w którą uderzył meteoryt, czy też należy do wału powstałego podczas wybuchu).

Problem pochodzenia krateru jest już w zasadzie rozwiązany, ale nie zamyka to całości badań związanych z obiektem.

Wszystkie omówione wyżej prace nad kraterem Frombork wykonano w czynie społecznym. Przeprowadzenie tych badań było możliwe tylko dzięki wydajnej pomocy, życzliwości i społecznej postawie członków i sympatyków naszego Towarzystwa. Chciałabym w tym miejscu złożyć Im wszystkim gorące podziękowania. Chciałabym także serdecznie podziekować przewodniczącemu Głównej Rady Naukowej, prof. Bohdanowi Kieleczewskiemu, który z ramienia Rady patronował badaniom krateru, za miłą współpracę, wydatną pomoc oraz cenne rzeczowe rady, jakich nam udzielał.

MAREK ZAWILSKI — Łódź

CZĘŚCIOWE ZAĆMIEŃIE KSIĘŻYCA 13/14 MARCA 1979 R.

Po dwu zaćmieniach całkowitych w ubiegłym roku, w roku 1979 będzie można obserwować w Polsce jedynie częściowe zaćmienie Księżyca — w nocy z 13 na 14 marca. Księżyca, znajdującego się wówczas w konstelacji Panny, w pobliżu węzła wstępującego swojej orbity, zanurzy się w cień dość głęboko (rys. 1 i 3). Maksymalna faza wyniesie 0,86 i tylko wąski rąbek tarczy w pobliżu północnego bieguna Księżyca pozostanie nie zaćmiony. Wielu miłośników astronomii pamięta zapewneподобne zaćmienie z dn. 4 czerwca 1974 r. (wówczas maksymalna faza wyniosła 0,83). Jak widać z efemerydy zjawiska (tab. 1) będzie ono widoczne w Polsce w całości w bardzo dobrych warunkach. Dość wysokie położenie Księżyca nad horyzontem (rys. 2) będzie sprzyjało dokonywaniu obserwacji.

I tym razem do nich zachęcamy, tym bardziej, że omawiane zaćmienie jest w Polsce ostatnie (nie licząc zaćmien półcieniowych) na przeciag najbliższych 3 lat.
Tab. 1. Efemeryda częściowego zaćmienia Księżyca w dniu 13/14 marca 1979 r. Źródło: Astronomiczny Eżegodnik SSSR na 1979 god.

<table>
<thead>
<tr>
<th>Zjawisko</th>
<th>Moment c.s.e.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Początek zaćmienia półcieniowego</td>
<td>13d19h10m9</td>
</tr>
<tr>
<td>Początek zaćmienia częściowego</td>
<td>20 28.9</td>
</tr>
<tr>
<td>Max. faza zaćmienia (0,858)</td>
<td>22 08.0</td>
</tr>
<tr>
<td>Koniec zaćmienia częściowego</td>
<td>23 47.2</td>
</tr>
<tr>
<td>Koniec zaćmienia półcieniowego</td>
<td>14 1 05.2</td>
</tr>
</tbody>
</table>

Wschód Księżyca ok. 18h cse.

Rys. 1. Przejście Księżyca przez cień i półcienie Ziemi.

Specyfika tego zjawiska, przede wszystkim wielkość maksimum fazy, nakazuje poczynić pewne uwagi co do ewentualnych obserwacji:

1. **Obserwacje kontaktowe ruchu cienia po tarczy Księżyca**

Szybkość ruchu cienia względem obiektów na tarczy różni się znacznie w zależności od ich szerokości selenograficznej. Obiekty na południowej półkuli wchodzą w cień i wychodzą z niego dość szybko, natomiast w przypadku obiektów położonych
na półkuli północnej, w pobliżu granicy półcienia, czas wcho­
dzenia w cień jest dość długi (patrz rys. 3). Daje to możliwość,
opóźnanych notowań czasów t_1, t_2 i t_3 (patrz „Urania”
nr 3 (1978, s. 86 i 87) obserwację zmian blasku kraterów i jas­
nych plamek, znajdujących się w pobliżu granicy, do jakiej
sięga cień.

Rys. 2. Widok zaćmienia nad horyzontem w środkowej Polsce. Tarcza
Księżycu powiększona 6 razy.

Należy przy tym zaznaczyć, że rys. 3 daje, z uwagi na
ograniczoną dokładność odwzorowania, jedynie ogólną orien­
tację o kolejności zaćmień obiektów księżycowych. Nie po­
winien on być wykorzystywany do określenia dokładnych mo­
mentów tych zjawisk i sugerowania się tymi danymi podczas
przeprowadzania obserwacji. Dokładność notowań czasów t_1,
t_2 i t_3 jest zresztą wymagana rzędu ± 1 s.

2. Barwa zaćmionego Księżyca

Ponieważ zaćmienie częściowe jest głębokie, w pobliżu maksyi­
mum fazy ujawni się czerwonawa barwa tarczy, ukrytej
w cieniu. Obserwacje tej barwy (pożądane stosowanie filtrów
barwnych o znanej długości fali) a także ew. widoczności obiektów księżycowych pozwolą na porównanie z wynikami, uzytykanymi dla zaćmienia całkowitego z 16 września ub. roku („Urania” nr 2/1979), które okazało się nadspodziewanie jasne.

3. Jasność Księżyca

Ponieważ spadek jasności będzie dość duży, można wykorzystać te same metody oceny blasku Księżyca, które stosuje się podczas zaćmienń całkowitych (odbicie w lustrzanej kuli, stosowanie odwróconej lornetki, soczewek ujemnych lub wreszcie amatorskich układów fotoelektrycznych).

I w tym przypadku ciekawa byłaby ocena minimum jasności Księżyca (tj. dla momentu maksimum fazy) i skonfrontowanie tej wartości z danymi z ubiegłych lat.

4. Obserwacje zakryć gwiazd

W pobliżu maksimum fazy będzie możliwe obserwowanie zakryć gwiazd do około 8—9 wielkości gwiazdowej. Ponieważ w chwili oddawania nin. artykułu do druku autor nie dysponował jeszcze dokładnymi danymi na ten temat, prosi zaинтересowanych o skontaktowanie się przed zaćmieniem.

Bliższe informacje na temat obserwacji zaćmień Księżyca znajdą czytelnicy w odpowiedniej literaturze („Urania” nr 8/1978, s. 241).

Autor byłby wdzięczny za nadsyłanie wyników obserwacji, szczególnie dotyczących ruchów cienia. Niestety, ilość wyznaczonych wiarygodnych momentów w dniu 16 września 1978 r. była zbyt mała, aby można było dokonać ich matematycznej analizy.

Adres dla korespondencji: Marek Zawilski, ul. Wojska Polskiego 72a m. 4, 91-809 Łódź.

KRONIKA

Nova Cygni 1978

P. Collins z Obserwatorium Mt Hopkins odkrył 10. 09. 1978 r. o 8h UT w gwiazdozbiorze Łabędzie gwiazdę nową o współrzędnych $\alpha = 21^h 40^m 38^s 28$, $\delta = 43^\circ 48'09''8$ (epoka 1950.0) o jasności 6m8. Jasność tej gwiazdy przed wybuchem wynosiła około 20m. W dniu 13. 09. 1978 r. w Obserwatorium w Heidelbergu uzyskano widmo tej nowej i stwierdzono silne continuum z wieloma liniami absorpcyjnymi (typu P Cygni). Otoczka nowej ekspanduje z prędkością v = 1400 km/s.

Zdjęcie tej nowej, wykonane 20. 10. 1978 w Chorzowie, przedstawione jest na okładce nin. zeszytu Uranii.

Wg IAUC 3263-3270.

IRENEUSZ WŁODARCZYK
Misja JOP

Akrónim JOP oznacza planowaną na lata 1981—2 misję sondy składającej się z satelity i próbnika Jowisza. Start sondy nastąpi z orbity parkingowej, na którą wyniesie ją prom kosmiczny. Po locie trwającym około 3 lat — a na 55 dob przed zbliżeniem się do Jowisza — od sondy oddzielony zostanie próbnik, który powinien wejść w atmosferę planety w celu przeprowadzenia badań in situ. Zakłada się, że łączność z próbnikiem (poprzez człon satelitarny) utrzymywana będzie przynajmniej 30 minut. Człon satelitarny (orbiter), wprowadzony na orbity wokół Jowiszu, powinien funkcjonować przez około 20 miesięcy. Misja przewidywa także przejście sondy w pobliżu Ganymedesa. Wśród 11 przyrządów badawczych na pokładzie orbitera znajdują się m. in.: system telewizyjny z ogniskową układu optycznego równą 1,5 m, zapewniający lepszą rozdzielczość obrazów niż osiągnięta przez którąkolwiek z kamer dotychczas wysłanych w przestrzeń, spektrometr pracujący w bliskiej podczerwieni przeznaczony do identyfikacji substancji pokrywających powierzchnie satelitów galileuszowych planety, spektrometr UV (nadmierne) do badań gęstości atmosfery Jowisza i słońce atmosfery jego satelitów, fotopolarimetr-radiometr do pomiarów temperatury atmosfery planety na różnych wysokościach i temperatury powierzchni satelitów, magnetometr, detektor plazmy w magnetosferze Jowisza i w przestrzeni międzyplanetarnej, licznik cząstek wysokoenergetycznych w pasach radiacji wokół Jowisza, przyrząd do badania rozmiarów, prędkości i ładunku elektrycznego mikrometeorytów, aparatura radiowa do pomiarów gęstości i rozmiarów atmosfery oraz detekcji anomalii grawitacyjnych, spektrometr masowy do analizy składu atmosfery, interferometr helowy mierzący z dużą dokładnością względną zawartość wodoru i helu w atmosferze (co ma ogromne znaczenie dla testowania modeli kosmologicznych), spektrometr masowy do analizy składu atmosfery, przyrząd mierzący szybkość wyhamowania próbnika w czasie jego ruchu w atmosferze, pozwalający na badanie jej struktury (zmian gęstości i temperatury z wysokością), nefelometr do badań obłoków i cząsteczek pyłowych w atmosferze, radiometr, dzięki któremu uzyskane zostaną dokładniejsze informacje o równowadze energetycznej Jowisza (wyprzemiennowującego 2,5 raza więcej energii niż otrzymuje jej ze Słońca), a także przyrząd do badań promieniowania radiowego wywołanego przez wyladowania atmosferyczne oraz do wykrycia rozbłysków świetlnych towarzyszących Jowiszowym błyskawicom.

Spaceflight, 19, 12, 435 (1977), Telecommun. J., 11, 530 (1977).

Z. PAPROTY

Satelita Plutona

Na zdjęciach wykonanych za pomocą 155-centymetrowego reflektora astrometrycznego Obserwatorium Morskiego USA odkryto, że obraz Plutona ma czasami kształt tarczy z „naroślą”. Efekt ten zauważono na kliszach z lat 1970 i 1965. Maksymalna elongacja „narośli” sięga 0,9 sekundy łuku. Wszystko to sugeruje, że Pluton obiegany jest przez satelitę, słabszego od planety o 2 lub 3 wielkości gwiazdowe, w odległości około 20 tysięcy kilometrów, po orbicie która wskutek skrótu perspek-
tywicznego ma kształt silnie spłaszczonej elipsy. Otrzymane dotychczas dane są zgodne z obserwowaną co 6,3867 dnia zmianą jasności planety. Jeśli ten czas jest w istocie okresem orbitalnym satelity, wtedy masa Plutona jest równa 1/140 000 000 masy Słońca. W lipcu 1978 r. zniekształcenie obrazu Plutona potwierdzone zostało niezależnie przez dwa inne obserwatoria.

Sky and Telescope, 56, 2, 110 (1978).

Z. PAPROTY

Jedenasty księżyce Saturna

Wg Science, 1977, vol. 197, 915.

S. R. BRZOSTKIEWICZ

Hipotetyczny satelita Herculininy

Obserwacje zjawiska typu zakryciowego znowu doprowadziły — jak się zdaje — do interesującego odkrycia astronomicznego. Mowa tu o zakryciu gwiazdy SAO 120774 przez planetoidę Herculinę (532), co nastąpiło 7 czerwca 1978 r. i było obserwowane przez dwa zespoły astronomów amerykańskich (E. Bowella i M. F. A'Hearne'a w Arizonie oraz J. McMahon i K. Hornec'go w Kalifornii). Zaobserwowali oni wtórne zakrycie gwiazdy SAO 120774, na podstawie czego wywnioskowano, iż dokoła Herculininy (średnica 217 ± 3 km) krąży w odległości 975 ± 1 km satelita o średnicy około 50 km. Gdyby jego albedo było takie samo jak macierzystej planetoidy, wówczas świeciłby słabiej od niej tylko o 3 wiel-

*) Odkryto w roku 1975 przez Charlesa T. Kowała czternasty księżyce Jowisza wymknął się spod nadzoru astronomów nim zdolano wyznaczyć dokładne parametry jego orbity, toteż — o ile faktycznie istnieje — trzeba go będzie na nowo odszukać na niebie.
kości gwiazdowe. A zatem hipotetyczny satelita Herculiny (prowizoryczne oznaczenie 1978 (532) 1) byłby widoczny na niebie jako obiekt 13 wielkości gwiazdowej i teoretycznie winien być dostępny zarówno do obserwacji wizualnych jak i fotograficznych.

Wg IAU Circular nr 3241.

S. R. BRZOSTKIEWICZ

Obłok sodowy Io

Obłok sodowy Io stanowi nadzwyczaj interesujące, po raz pierwszy w Układzie Słonecznym zaobserwowane zjawisko. Jak powstał i dlaczego zawiera sód? Zagadnieniem tym zajmował się Dennis Matson ze swymi współpracownikami. Po przeanalizowaniu bogatego materiału obserwacyjnego doszli oni do wniosku, iż atomy sodu uciekają z powierzchni Io na skutek bombardowania wysokoenergetycznymi cząsteczkami magnetofoery Jowisza. Cząstki te wybijają z księżyca nie tylko atomy sodu ale również potasu i siarki. Asymetryczny kształt obłoku świadczy o tym, że „deszcz” cząstek magnetofoery Jowisza nie oddziaływał z jednakową intensywnością na całą powierzchnię księżyca, lecz najsilniej na półkule zwróconą ku planecie. A ponieważ Io ma zahamowany obrót i zwraca ku Jowiszu stale tę samą półkule swego globu, siłą więc rzeczy bierze ona większy udział w „zaopatrzeniu” obłoku niż półkula odwrotna. Tym też tłumaczyć można jego asymetryczny kształt.

Na razie są to oczywiście tylko przypuszczenia. Jest przecież możliwe, że na asymetrię obłoku sodowego Io mają wpływ inne, dziś jeszcze nieznane czynniki. Więcej światła na powyższe zagadnienie rzucić badania wykonane za pomocą sond „Voyager”, które w roku 1979 przejdą w pobliżu Jowisza. Ich program badawczy przewiduje eksperymenty mające na celu wyjaśnienia natury obłoku Io.

S. R. BRZOSTKIEWICZ

Rozmiary Iapetusa

Wykorzystując dane o zmienności blasku Iapetusa, wywołanej jego obiegiem wokół Saturna, oraz obserwacje zakrycia satelity przez Księżyc (z 30 marca 1974), autorzy referowanej pracy wyznaczyli rozkład jasności na jego tarczy oraz dość dokładną wielkość promienia: 718 (± 87 — 78) km. Z obserwacji wynika, że na Iapetuse znajduje się obszary bardzo jasne (albedo 0,60 w zakresie widzialnym) i dość ciemne (albedo 0,11).

Veverka J. et al., Icarus, 33, 2, 301 (1978).

Z. PAPROTNY
Losy próbek gruntu księżycowego, dostarczonego przez amerykańskie statek Apollo

Na zebraniu Grupy Obserwatorów Księżyca przy Obserwatorium i Planetarium Wilhelma Foerstera (Berlin Zach.) w dniu 9. 10. 1978 r. zreferredowano korespondencję z NASA na wymieniony w tytule temat. Charles Biggs i Patrick Butler z Houston komunikują, że wszystkie próbki, o łącznej masie 381,5 kg (z czego Apollo 11 dostarczył 21,5 kg, resztę — Apollo 17) są skrupulatnie zainwentaryzowane i troskliwie przechowywane. Część z nich znajduje się czasowo poza Houston, wypożyczona bądź przekazana różnym instytucjom dla celów badawczych.

Po powrocie statek Apollo 11 każdy z 50 stanów otrzymał po jednej próbce ok. 1 grama, następne próbki — również ok. 1 g — rozdano poszczególnym stanom po locie Apollo 17. Próbki te mają rozmiar lekka od zapalke i zatopione są w plastikowych pojemnikach. Poza tym podobnymi próbami obdarowano każde z państw członków ONZ.

Stracono bezpowrotnie jedną próbkę 30 g, która zatonęła w falach Atlantyku w drodze do Afryki Południowej na skutek katastrofy samolotu. Około 6 kg materiału księżycowego uległo rozkładowi w czasie chemicznych prób niszczących.

Około 50 cząstek o masach od 19 do 800 g znajduje się w muzeach, uczelniach bądź laboratoriach. Niektóre z nich wypożyczone są na dłuższy okres czasu. Briggs stwierdza z naciskiem, że ani jedna cząstka nie została nikomu na świecie przekazana na prywatną własność. Tego rodzaju „pamiątek z Księżyca” nie otrzymał nawet żaden z dwunastu astronautów amerykańskich; otrzymali je jedynie administracje państw lub instytucje naukowe.

Większa część kamieni i piasku księżycowego, o łącznej masie 338,5 kg, nigdy nie opuściła Houston. Są one przechowywane w pojemnikach wypełnionych azotem. Z około 21 kg materiału przekazanego do badania w różnych krajach świata około 9 kg jeszcze nie zostało zwróconych.

Butler, odpowiedzialny za gospodarce materiałem księżycowym, barwnie relacjonuje kilka przypadków chwilowego zawieruch okrutnych drogowych. Miejsce, gdzie niezidentyfikowane materiały nie zostały przechowywane, można zbadać w różnych krajach świata około 9 kg jeszcze nie zostało zwróconych.

Butler, odpowiedzialny za gospodarce materiałem księżycowym, barwnie relacjonuje kilka przypadków chwilowego zawieruch okrutnych drogowych. Miejsce, gdzie niezidentyfikowane materiały nie zostały przechowywane, można zbadać w różnych krajach świata około 9 kg jeszcze nie zostało zwróconych.

Butler, odpowiedzialny za gospodarce materiałem księżycowym, barwnie relacjonuje kilka przypadków chwilowego zawieruch okrutnych drogowych. Miejsce, gdzie niezidentyfikowane materiały nie zostały przechowywane, można zbadać w różnych krajach świata około 9 kg jeszcze nie zostało zwróconych.

Butler, odpowiedzialny za gospodarce materiałem księżycowym, barwnie relacjonuje kilka przypadków chwilowego zawieruch okrutnych drogowych. Miejsce, gdzie niezidentyfikowane materiały nie zostały przechowywane, można zbadać w różnych krajach świata około 9 kg jeszcze nie zostało zwróconych.

LUDWIK ZAIDLER

Szron na Kallisto

Za pomocą 28-calowego teleskopu podczerwonego Obserwatorium Mount Lemmon, administrowanego przez Jet Propulsion Laboratory, w widmach Ganymedesa i Kallisto zdolano wykryć (na fali 3,1 m) pasmo absorpcyjne szronu wodnego. Odkryto go już wcześniej na powierzchniach Europy i Ganymedesa — na Io i Kallisto był dotąd nieznany. Analiza podczerwonego widma refleksyjnego Kallisto i Ganimeedu wy-
kazala, że na powierzchniach obu satelitów powinny znajdować się uwodnione minerały typu montmorillonitu, a także ciemna substancja podobna do chondrytów węglowych. Ilość szronu H₂O na obu ciałach jest tego samego rzędu (na Kallisto nieco mniej).

Z. PAPROTNY

OBSEWACJE

Raport X o radiowym promieniowaniu Słońca

Srednie strumienie miesiąca: 11,5 (127 MHz. 31 dni obserwacji) i 168,3 su (2800 MHz, 22 dni). Srednia miesięczna wskaźników zmienności — 0,42.

Z 26 zjawisk opracowanych dla częstotliwości 127 MHz (na 2800 MHz zaobserwowano 1 zjawisko) 18 przypadło na burze szumowe (głównie w okresie 10—31 X). Wielkie wybuchy wystąpiły w dniach 1, 8 i 13 X (ten ostatni spowodował wysycenie odbiornika po godz. 1241 UT na poziomie 3200 su).

28 X minęło okrągłe 20 lat od pierwszych toruńskich obserwacji w ramach służby Słońca na częstotliwości 127MHz. O tym wydarzeniu piszemy oddzielnie.

Toruń, 9 listopada 1978 r.
K. M. BORKOWSKI, H. WEŁNOWSKI

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 10/78

W październiku 1978 r., podobnie jak w miesiącu poprzednim, utrzymywała się wysoka aktywność Słońca. Srednia miesięczna względna liczba Wolfa (*month mean Wolf Number*) za miesiąc

październik 1978 r. R = 129,2
Aktywność plamotwórcza Słońca, na początku miesiąca umiarkowana, znacznie wzrosła na początku drugiej dekady i w końcu miesiąca z powrotem spadła do wartości umiarkowanej. W październiku odnotowano na widocznej tarczy Słońca powstanie 34 grup plam słonecznych. Odnotowane grupy były małe lub średniej wielkości. Średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc

październik 1978 r. S = 1197 \cdot 10^{-6}

Wykorzystano: 219 obserwacji 22 obserwatorów w 27 dniach obserwacyjnych. Obserwatorzy:

Dąbrowa Górnicza, 6. 11. 1978.

20 lat radiowej służby Słońca w Toruniu

Tak rozpoczęta służba Słońca, z krótkimi przerwami i pewnymi koniecznymi zmianami instrumentalnymi, była z powodzeniem kontynuowana ciągle na tej samej częstotliwości. Dnia 28 X 1978 r. minęło 20 lat, co czynnika połkazni zbiór wyników. Zbiór ten jest wyjątkowy w skali światowej, gdyż nawet obecnie tylko nieliczne obserwatoria prowadzą regularne obserwacje Słońca na tak niskich częstotliwościach (poniżej 200 MHz). Głównym powodem takiej sytuacji są trudności instrumentalne występujące w tym zakresie częstotliwości.

Na służbie Słońca na częstotliwości 127 MHz przez minione 20 lat zdobywała doświadczenie dzisiejsza kadra radioastronomów toruńskich. Wielu z tych, którzy zaczynali swą pracę od tych właśnie obserwacji, później pracowało w tak znanych obserwatoriach jak Cambridge (W. Brytania), Sydney (Australia) czy Green Bank (USA). Pomijając sporą garsć publikacji związanych z toruńskimi obserwacjami wspomnijmy, że obserwacje te były podstawą kilku prac magisterskich a obecnie czynione są przygotowania do pracy doktorskiej opartej na tychże wynikach.

Od 1975 r. czytelnicy „Uranii” są na bieżąco szczegółowo informowani o wynikach toruńskich obserwacji na częstotliwości 127 MHz poprzez comiesięczne „Raporty o radiowym promieniowaniu Słońca”. Dość wyczerpujące podsumowania wcześniejszych wyników można zna-
leźć w „Postępach Astronomii” (XXV, z. 3, 1977). Notka o okazji jubileuszu nie byłaby jednak pełna bez kilku cyfr. W ciągu minionych 20 lat wyznaczono 5712 strumieni średnich dziennych (stanowi to 78,2% możliwych), które dają średnią za ten okres 8,0 \cdot 10^{-22} \text{W} \cdot \text{m}^{-2} \cdot \text{Hz}^{-1}. Przyjmując średnie parametry używanych instrumentów (powierzchnia skuteczna anten — ok. 5 m², szerokość wstęgi odbieranych częstotliwości — ok. 300 kHz i ok. 8 godzin obserwacji na dzień) Czytelnik łatwo oceni sumaryczną energię promienistą odebraną przez te instrumenty w ciągu omawianego okresu — ok. 2 \cdot 10^{-7} \text{dz} / (dla porównania: 1 gram materia spadając z wysokości 1 metra uwalnia ok. 50 000 razy więcej energii!). W tychże 20 latach opracowano 1826 zjawisk niezwykłych — 2342 uwzględniając dodatkowe ostatnie, wykonane opracowania G. Gawrońskiej i K. M. Borkowskiego. Średnio za 20 lat zmiennosc strumienia wyniosła 0,40.

K. M. BORKOWSKI

Komunikat Głównej Rady Naukowej PTMA

W związku z opracowywaniem Katalogu Meteorytów Polski Rada Naukowa zwraca się do wszystkich posiadaczy meteorytów (osób prywatnych i instytucji) o informacje na ich temat.

Pełna informacja powinna zawierać: Czas i miejsce znalezienia, nazwisko znalazcy, ew. czas, miejsce, współrzędne horyzontalne spadku i nazwisko obserwatora (o ile spadek był obserwowany), losy odlamka, gdzie się obecnie znajduje, typ, masa, gęstość, skład chemiczny i mineralogiczny, kto wykonał analizy, fotografię bryłki oraz nazwisko i adres informatora. Prosimy także o informacje o meteorytach „obcych”, tj. przywiezionych z innych stron świata, a także o meteorytach zaginionych.

KRONIKA PTMA

Komunikat Oddziału Warszawskiego PTMA

Oddział Warszawski PTMA w trosce o zapewnienie miłośnikom astronomii jak najpełniejszego, w miarę możliwości, zaspokojenia potrzeb — stosownie do zainteresowań — zaktywizował prace w trzech podstawowych kierunkach działania: obserwacje, budowa instrumentów optycznych, odczyty popularnonaukowe.

W zakresie obserwacji, pod kierunkiem Kol. Romana Fangora, kontynuuje się obserwacje posiadające wartość naukową. Ponadto, w każdy poniedziałek prowadzone są seminaria dla adeptów sztuki obserwacji oraz pokazy nieba (po odczycie).

Pod kierownictwem Kol. Lucjana Newelskiego wznowiono działalność sekcji budowy instrumentów, która cieszy się wielką popularnością wśród młodych astronomów.

Odczyty popularnonaukowe odbywają się dwa razy w tygodniu w salach wykładowych szczelnie wypełnionych publicznością. Działalność Oddziału spotkała się z dużym uznaniem miłośników astronomii, czego wyrazem jest liczny napływ nowych członków. Od
stycznia do listopada 1978 r. przyjęto do Oddziału Warszawskiego 47 nowych członków.

Na okres zimowo-wiosenny Oddział Warszawski Polskiego Towarzystwa Miłośników Astronomii przy współpracy Centrum Astronomicznego im. M. Kopernika PAN oraz Obserwatorium Astronomicznego U. W. przygotował następujący cykl wykładów popularnonaukowych:

<table>
<thead>
<tr>
<th>Data</th>
<th>Wykładowca</th>
<th>Temat</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 II</td>
<td>dr M. Abramowicz</td>
<td>Czy jesteśmy w środku Wszechświata?</td>
</tr>
<tr>
<td>26 II</td>
<td>doc. J. Stodólkiewicz</td>
<td>Ramiona spiralne</td>
</tr>
<tr>
<td>5 III</td>
<td>dr T. Kwaśniewski</td>
<td>Skąd wiemy, jak wielki jest Wszechświat?</td>
</tr>
<tr>
<td>12 III</td>
<td>dr E. Basińska-Grzesik</td>
<td>Galaktyki w promieniach X</td>
</tr>
<tr>
<td>19 III</td>
<td>dr J. Zieliński</td>
<td>Gwiazdy rentgenowskie</td>
</tr>
<tr>
<td>26 III</td>
<td>dr M. Kozłowski</td>
<td>Historyczne supernowe</td>
</tr>
<tr>
<td>2 IV</td>
<td>mgr W. Kluźniak</td>
<td>Czy kwazar to supergwiazda z dziurą?</td>
</tr>
<tr>
<td>9 IV</td>
<td>prof. B. Paczyński</td>
<td>Najstarsze gwiazdy</td>
</tr>
<tr>
<td>16 IV</td>
<td>prof. J. Smak</td>
<td>Najmłodsze gwiazdy</td>
</tr>
<tr>
<td>23 IV</td>
<td>doc. W. Krzemień</td>
<td>Metoda Monte Carlo w astronomii</td>
</tr>
<tr>
<td>30 IV</td>
<td>prof. J. Smak</td>
<td>Fizyka gwiazd neutronowych</td>
</tr>
<tr>
<td>7 V</td>
<td>mgr W. Wilczewski</td>
<td>Krzywe blasku gwiazd zmiennych zaćmieniowych</td>
</tr>
<tr>
<td>14 V</td>
<td>dr hab. P. Haensel</td>
<td>Jak promieniowanie oddziaływa z materią?</td>
</tr>
</tbody>
</table>

2. Wykłady odbywające się w Obserwatorium U. W. przy Al. Ujazdowskich 4 (we czwartki):

<table>
<thead>
<tr>
<th>Data</th>
<th>Wykładowca</th>
<th>Temat</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 II</td>
<td>dr M. Kubiak</td>
<td>Sens i nonsens w astronomii</td>
</tr>
<tr>
<td>1 III</td>
<td>doc. K. Stępniak</td>
<td>Czy zawdzięczamy swe istnienie wybuchowi supernowej?</td>
</tr>
<tr>
<td>8 III</td>
<td>dr A. Krasiński</td>
<td>Jak można wykryć pozaziemskie cywilizacje?</td>
</tr>
<tr>
<td>15 III</td>
<td>mgr T. Chlebowski</td>
<td>Laceretydy</td>
</tr>
<tr>
<td>22 III</td>
<td>mgr M. Czerny</td>
<td>Kieszonkowe planety</td>
</tr>
<tr>
<td>29 III</td>
<td>mgr Z. Otwinowski</td>
<td>Gdzie w Kosmosie są kwarki?</td>
</tr>
<tr>
<td>5 IV</td>
<td>dr M. Sroczyńska-Kożuchowska</td>
<td>Plazma kosmiczna</td>
</tr>
<tr>
<td>19 IV</td>
<td>prof. J. Smak</td>
<td>Gwiazdy nowe</td>
</tr>
<tr>
<td>26 IV</td>
<td>mgr B. Muchotrzeb</td>
<td>Jak płynie czas?</td>
</tr>
<tr>
<td>3 V</td>
<td>mgr M. Sikora</td>
<td>Rotujące czarne dziury</td>
</tr>
<tr>
<td>10 V</td>
<td>mgr R. Sienczewicz</td>
<td>Biały karły</td>
</tr>
<tr>
<td>17 V</td>
<td>doc. J. Stodólkiewicz</td>
<td>Gromady kuliste</td>
</tr>
<tr>
<td>24 V</td>
<td>dr J. Juchniewicz</td>
<td>Gromady otwarte i asocjacje</td>
</tr>
</tbody>
</table>

Wykłady w CAMK’u odbywać się będą w poniedziałki o godz. 17 (dojazd autobusem 108 z Pl. Trzech Krzyży), a w Obserwatorium U. W. w czwartki o godz. 17. Wstęp wolny.

Zygmunt Grela
Międzynarodowy Młodzieżowy Obóz Astronomiczny w RFN

W okresie wakacyjnym odbędzie się w RFN (Niemcy Zachodnie) międzynarodowy obóz dla miłośników astronomii organizowany przez Holenderskie Towarzystwo Astronomiczne.

Uczestniczyć w nim może młodzież dowolnej narodowości w wieku 16—22 lat, posiadająca dostateczną znajomość języka angielskiego.

Zajęcia prowadzone będą pod kierunkiem doświadczonych instruktorów w szeregu specjalistycznych grup roboczych jak: układ planetarny, astronomia ogólna, meteory, sztuczne satelity, historia astronomii, promieniowanie kosmiczne, gwiazdy zmienne oraz spektroskopia. Przewidziane są również wycieczki.

Obóz zlokalizowany jest w małej wsi Violau (RFN) położonej w Bawarii ok. 50 mil od Monachium. Uczestnicy obozu będą mieli do dyspozycji małe obserwatorium (12 calowy refraktor, kamera Schmidta, itp.) oraz doskonałe warunki do obserwacji bez zakłóceń światłami miejskimi.

Dane organizacyjne:

Czas trwania obozu — 20 lipiec — 10 sierpień 1979 r.
Lokalizacja — Violau (RFN), Bawaria.
Liczba uczestników — 80 osób.
Opłata, łącznie z pełnym utrzymaniem, wycieczkami itp. — 300 DM (marek zachodnioniemieckich) lub ok. 165 dolarów. Wyjazd na warunkach turystycznych — załatwienie paszportu we własnym zakresie.

W sprawie dalszych szczegółowych informacji należy się wracać do:

IYAC, Tjalling Vis
Haven N. Z. 113
7602 EG Almelo
Netherlands

KALENDARZYK ASTRONOMICZNY

Opracował G. Sitarski
Kwiecień 1979 r.

Słońce

W kwietniu Słońce wstępuje w znak Byka. Dnia ciągle przybywa, o czym świadczyć momenty wschodów i zachodów Słońca: w Warszawie 1 kwietnia Słońce wstępuje o 5h12m, zachodzi o 18h49m, a 30 kwietnia wstępuje o 4h10m, zachodzi o 18h59m.
Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B_0</th>
<th>L_0</th>
<th>Data 1979</th>
<th>P</th>
<th>B_0</th>
<th>L_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV 1</td>
<td>-26°20</td>
<td>-6°53</td>
<td>330°62</td>
<td>IV 17</td>
<td>-25°95</td>
<td>-5°43</td>
<td>119°44</td>
</tr>
<tr>
<td>3</td>
<td>-26.27</td>
<td>-6.42</td>
<td>304.24</td>
<td>19</td>
<td>-25.78</td>
<td>-5.26</td>
<td>93.02</td>
</tr>
<tr>
<td>5</td>
<td>-26.31</td>
<td>-6.30</td>
<td>277.84</td>
<td>21</td>
<td>-25.60</td>
<td>-5.09</td>
<td>66.60</td>
</tr>
<tr>
<td>7</td>
<td>-26.32</td>
<td>-6.17</td>
<td>251.45</td>
<td>23</td>
<td>-25.37</td>
<td>-4.92</td>
<td>40.18</td>
</tr>
<tr>
<td>9</td>
<td>-26.31</td>
<td>-6.04</td>
<td>225.06</td>
<td>25</td>
<td>-25.12</td>
<td>-4.72</td>
<td>13.76</td>
</tr>
<tr>
<td>11</td>
<td>-26.26</td>
<td>-5.90</td>
<td>198.65</td>
<td>27</td>
<td>-24.84</td>
<td>-4.54</td>
<td>347.34</td>
</tr>
<tr>
<td>13</td>
<td>-26.19</td>
<td>-5.74</td>
<td>172.25</td>
<td>29</td>
<td>-24.53</td>
<td>-4.34</td>
<td>320.91</td>
</tr>
<tr>
<td>15</td>
<td>-26.08</td>
<td>-5.59</td>
<td>119°44</td>
<td>V 1</td>
<td>-24.19</td>
<td>-4.14</td>
<td>294.48</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy.
B_0, L_0 — heliograficzna długość i szerokość środka tarczy.

Księżyc

Ciemne, bezksiężycowe noce będziemy mieli w ostatniej dekadzie miesiąca, bowiem kolejność faz Księżyca jest w kwietniu następująca: pierwsza kwadra 4d11h, pełnia 12d14h, ostatnia kwadra 19d20h, nów 26d14h. Najdalej od Ziemi Księżyc znajdzie się 7, a najbliżej Ziemi 22 kwietnia. W kwietniu tarcza Księżyca zakryje Wenus, Merkurego oraz dwukrotnie Aldebarana, gwiazdę pierwszej wielkości w gwiazdozbiorze Byka; zjawiska te będą u nas niewidoczne.

Planety i planetoidy

Rankiem, nisko nad wschodem horyzontem możemy jeszcze odnaleźć Wenus świeczącą jak jasna gwiazda -3.4 wielkości. Merkury i Mars również przebywają nisko nad wschodem horyzontem, ale giną w blasku wschodzącego Słońca i są praktycznie niewidoczne. Jowisz zachodzi w drugiej połowie nocy, możemy więc obserwować go przez kilka godzin jako gwiazdę -1.8 wielkości w gwiazdozbiorze Raka; przez lunety możemy dostrzec wiele ciekawych zjawisk w układzie czterech najjaśniejszych księżyców Jowisza. Saturn widoczny jest prawie całą noc w gwiazdozbiorze Lwa (+0.7 wielk. gwiazd.), a Uran i Neptun w drugiej połowie nocy: Uran w gwiazdozbiorze Wagi (6 wielk. gwiazd.), Neptun nisko nad horyzontem w gwiazdozbiorze Wężownika (8 wielk.). Pluton świeci przez całą noc na granicy gwiazdozbiorów Panny, Wolarza i Warkocza Bereniki, ale dostępny jest tylko przez duże teleskopy (14 wielk. gwiazd.). Natomiast żadna z czterech najjaśniejszych planetoid nie jest widoczna.

Meteory

Od 19 do 24 kwietnia promieniują kwietniowe Lirydy (maksimum aktywności przypada 22, ale za dnią!). Radiant meteorów leży w gwiazdo-
zbiorze Lutni w pobliżu Wagi i ma współrzędne: rekt. 18h8m, dekl. +32°. Rój nie jest zbyt obfity, ale możemy oczekiwać spadku jasnych meteorów. Warunki obserwacji są w tym roku dobre.

* * *

1d O 17h bliskie złączenie Księżyca z Aldebaranem; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Środkowej i Południowej Ameryce, na północnym Atlantyku, w północnej Afryce, w południowej Europie i w południowo-zachodniej Azji. O 23h Merkury w złączeniu z Marsem w odl. 3°.

2d Obserwujemy zakrycie 3 księżyca Jowisza przez tarczę planety. Początek zakrycia o 19h51m, koniec o 23h27m. Po północy nastąpi jeszcze o 24h48m początek zacmienia 3 księżyca, a o 24h52m początek zakrycia księżyca 1.

3/4d Księżyca 1 i jego cień przechodzą na tle tarczy Jowisza. Początek przejścia księżyca 1 o 22h3m, a jego cienia o 23h15m; koniec przejścia księżyca o 0h18m, a cienia o 1h31m.

4d Księżyca 1 Jowisza przechodzi z tarczą planety. O 19h20m na­stąpi początek zakrycia tego księżyca, a o 22h53m koniec jego zacmienia (pojawi się nagle niedaleko prawego brzegu tarczy, patrząc przez lunetę odwracającą).

5d O 19h Jowisz w złączeniu z Księżyca w odl. 5°. Do 20h na tarczy Jowisza widoczny jest cień księżyca. O 21h59m obserwujemy początek zakrycia 2 księżyca przez tarczę planety.

6d O 2h Merkury nieruchomy w rektascensji. O 24h4m obserwujemy początek zacmienia 4 księżyca Jowisza; w tym czasie z prawej strony tarczy planety przebywają trzy księżyce, księżyca 4 jest najbliższym brzegu tarczy (dalej są jeszcze księżyce 1 i 2).

7d Księżyca 2 i jego cień wędrują na tle tarczy Jowisza. Początek przejścia cienia obserwujemy o 19h30m, podczas gdy koniec przejścia samego księżyca o 19h50m. Cień widoczny jest na tarczy planety do 22h21m.

8d8h Pluton w przeciwwstawnieniu ze Słońcem względem Ziemi.

9d O 2h Saturn w złączeniu z Księżyca w odl. 3°. O 23h43m obserwujemy początek zakrycia 3 księżyca Jowisza przez tarczę planety.

10d O 23h56m obserwujemy początek przejścia 1 księżyca Jowisza przed tarczą planety. Cień tego księżyca pojawi się na tarczy Jowisza dopiero ponad godzinę po północy.

11d O 21h13m obserwujemy początek zakrtycia, a o 24h48m koniec zaćmienia 1 Księżyca Jowisza.

12d Księżyca 1 Jowisza przechodzi na tle tarczy planety, a od 19h39m widoczny jest na niej także cień tego księżyca. Księżyca 1 kończy przejście o 20h39m, a jego cień o 21h55m. O 24h31m obserwujemy jeszcze początek zakrycia 2 księżyca przez tarczę Jowisza.

13d Do 22h14m po tarczy Jowisza wędruje cień jego 3 księżyca.

14d O 16h Uran w złączeniu z Księżyca w odl. 4°. Wieczorem na tle tarczy Jowisza przechodzi jego księżyce 2, a o 22h7m widoczny jest także cień tego księżyca. O 22h11m przejście na tle tarczy rozpoznana 4 księżyca Jowisza. Księżyca 2 kończy przejście o 22h24m, a jego cień widoczny jest na tarczy planety do 24h58m.
16d24h Neptun w złączeniu z Księżycem w odl. 4°.
18d O 23h8m obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety.
19d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza. Księżyc 1 rozpocznie przejście o 20h18m, a jego cień pojawi się na tarczy planety o 21h34m; koniec przejścia księżyca 1 nastąpi o 22h34m, a jego cienia o 23h50m.
20d18h Słońce wstępuje w znak Byka; jego długość ekliptyczna wynosi wówczas 30°. Wieczorem księżyce 3 przechodzi na tle tarczy, a księżyce 1 za tarczą Jowisza. O 21h2m obserwujemy koniec przejścia księżyca 3, a o 21h12m koniec zaćmienia księżyca 1. O 22h38m na tarczy planety pojawi się dopiero cień księżyca 3.
21d O 14h Merkur w największym zachodnim odchyleniu od Słońca (27°), jest jednak w tak niekorzystnym położeniu względem Słońca i Ziemi, że jest praktycznie niewidoczny. Wieczorem obserwujemy początek przejścia księżyca 2 (o 22h10m) i jego cienia (o 24h44m) na tle tarczy Jowisza.
22d Księżyc 2 i 4 ukryte są w cieniu Jowisza. O 21h45m obserwujemy koniec zaćmienia księżyca 2, a o 22h55m koniec zaćmienia księżyca 4. Obydwa księżyce pojawią się nagle z prawej strony tarczy planety (patrząc przez lunetę odwracającą), księżyce 2 w odległości średnicy tarczy od jej brzegu, a księżyce 4 w odległości trzech średnic tarczy planety.
23d Księżyce znajdzie się w bliskim złączeniu o 4h z Wenus, a o 14h z Merkurym. Zakrycie Wenus widoczne będzie we wschodniej Afryce, na Oceanie Indyjskim i w południowo-wschodniej Azji, a zakrycie Merkurego w Ameryce Północnej, na Grenlandii w północnej Europie. O 24h Mars znajdzie się w złączeniu z Księżycem w odl. 2°.
24d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy początek przejścia: księżyca 1 o 22h13m, a jego cienia o 23h29m. Koniec przejścia księżyca 1 nastąpi o 24h29m.
25d Księżyce 1 ukryty jest w cieniu Jowisza, a księżyce 3 zbliża się do brzegu tarczy. O 21h30m obserwujemy początek przejścia księżyce 3 na tarczy planety, a o 23h7m koniec zaćmienia księżyca 1 (pojawi się on nagle z prawej strony tarczy Jowisza).
26d Do 20h14m na tarczy Jowisza widoczny jest cień jego 1 księżyca. Księżyce 2 zbliża się do brzegu tarczy planety i rozpocznie przejście na jej tle o 24h48m.
29d2h Po raz drugi w tym miesiącu bliskie złączenie Księżyca z Aldebaranem; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w południowo-wschodniej Azji, na Północnym Pacyfiku i w Ameryce Północnej.
30d Księżyce 2 przechodzi za tarczą Jowisza. O 18h59m nastąpił początek zakrycia tego księżyca przez tarczę planety, a o 24h23m obserwujemy koniec jego zaćmienia (w odległości równej średnicy tarczy od jej prawego brzegu).
Minima Algola (beta Perseusza): kwiecień 9d6h50m, 12d3h35m, 15d0h25m, 17d21h10m, 20d18h5m.
Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim.
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.

H. Korpikiewicz — A report on a state of explorations of a meteorite crater at Frombork.

M. Zawilski — The partial eclipse of the Moon 13/14th March 1979.

Observations: The 20 years of the radio service of the Sun in Toruń — An announcement of the General Scientific Council of PTMA.

PTMA Chronicle.
Astronomical Calendar.

OGŁOSZENIE

Stanisław Czareński
ul. Józefa Dietla 48 m. 6
31-039 Kraków

SPIS TREŚCI

Michał Heller — Aktualne problemy kosmologii.

T. Zbigniew Dworak i Zbigniew Paprotny — Pochodzenie i rola Księżyca w rozwoju życia i nauki na Ziemi.

Zbigniew Rzepka — Programy obliczeń astronomicznych na kalkulator elektroniczny.

Kronika PTMA: IX Ogólnopolski Zjazd Obserwatorów Słońca i VII Sesja Astronomiczna w Dąbrowie

Górny — Sprawozdania z trzech turnusów obserw.-szkoleniowych.

Kalendarzyk astronomiczny.
AKTUALNE PROBLEMY KOSMOLOGII *

W samo sedno zagadnienia kosmologicznego wchodzi problem ekstrapolacji: znajdujemy się na małej planecie, a chcemy po­
znąć struktury Wszechświata w największej możliwej skali; znajomość praw ziemskiej fizyki i wyniki obserwacji czynio­
nych na Ziemi staramy się rozciągnąć na najodleglejsze obsza­
ry. Ale naszą wiedzę możemy wzbogacać nie tylko przez pod­
bijanie dla niej coraz to nowych regionów, możemy również
wnikać coraz bardziej w głąb. Okazuje się, że obydwa te kie­
runki: „na odległość” i „w głąb”, wyznaczają kierunki rozwo­
ju współczesnej kosmologii.

Przez Wszechświat umówmy się roboczo rozumieć zbiór wszystkich możliwych zdarzeń. Fizycy-relatywiści zbiór wszyst­
kich możliwych zdarzeń nazywają także czasoprzestrzenią.
A zatem tendencje rozwojowe współczesnej kosmologii spro­
wadzają się do poszukiwania odpowiedzi na dwa pytania: 1 — Jak daleko możemy iść w czasoprzestrzeni? oraz 2 — Jak głę­
boko możemy iść w czasoprzestrzeni? Pytania te będą również
wyznaczać tok naszych dalszych rozważań.

Jak daleko możemy iść w czasoprzestrzeni?
Na to pytanie mogą paść dwie odpowiedzi: (a) albo idąc ciągle
przed siebie będziemy iść bez końca, albo (b) natrafimy na ja­
kąs przeszkodę, nasza „historia” (lub „linia światowa” — jak
mówią relatywiści) nagle się urwie. Możemy sobie wyobrazić,
że czasoprzestrzeń ma jakby — brzeg składający się z punktów
dwojakiego rodzaju: z punktów „w nieskończoności” (możli­
wość a) i z punktów, do których można dojść w skończonym
czasie, lecz na których „historia” się urywa (możliwość b).
Jeśli wykluczyć możliwość sztucznego odcięcia kawałka czaso­
przestrzeni, to punkty brzegu należące do klasy (b) mogą re­
prezentować tylko tzw. osobliwości. Przykładem osobliwości
jest początek rozszerzania się Wszechświata w najprostszych
modelach kosmologicznych Friedmana—Lemaître’a, na którym
urywają się (tzn. nie mogą być przedłużane wstecz) historie
wszystkich obserwatorów i cząstek materialnych, lub też fi­
nal kolapsu grawitacyjnego, w którym w teoretycznie nie-

* Referat wygłoszony na Sesji Naukowej PTMA w Mogilanach
28 X 1978 r.
skończonych gęstościach zostają zgniecone wszystkie struktury.

Dotychczas wyobrażaliśmy sobie brzeg czasoprzestrzeni intuitownie, ale rzecz w tym, że relatywiści-teoretycy potrafili skonstruować brzeg czasoprzestrzeni w sposób matematycznie ścisły i konstrukcja ta oddała wielkie usługi w badaniach kosmologicznych. Istnieją przekształcenia matematyczne, tzw. przekształcenia konforemne, które mają tę własność, że punkty z nieskończoności przenoszą do skończonych odległości, a osobliwości, które zwykle wyobrażamy sobie jako punkty (np. „punkty”, w których gęstość materii osiąga wartości nieskończone) rozciągają się do postaci prostych lub płaszczyzn. Przyjrzyjmy się przykładom.

Rys. 1 przedstawia konforemne odwzorowanie czasoprzestrzeni szczególnej teorii względności (czasoprzestrzeni Minkowskiego). Jest to diagram dwuwymiarowy, dla prostoty dwa wymiary pominięto. Brzeg czasoprzestrzeni tworzą trzy punkty, \(i^-, i^+, i^0 \) oraz dwie proste: \(J^- \), \(J^+ \). Brzeg ten przedstawia „punkty w nieskończoności”, czasoprzestrzeń Minkowskiego nie posiada osobliwości. W punkcie \(i^- \) „zaczynają się” a w punkcie \(i^+ \) „konczy się” historie wszystkich obserwatorów i wszystkich cząstek materialnych. Na prostej \(J^- \) „zaczynają się” a na prostej \(J^+ \) „konczą się” historie wszystkich promieni świetlnych (fotonów). Punkt \(i^0 \) przedstawia „nieskończoność przestrzenną”: jeżeli pewien obserwator wysyła sygnał radarowy (świetlny) do punktu \(i^0 \), to na powrót echa odbitego od \(i^0 \) musi czekać nieskończenie długo.
Rys. 2 przedstawia tzw. zamknięty model kosmologiczny Friedmana-Lemaître’a (z $k = 0$). Ewolucja modelu zaczyna się od osobliwości początkowej, a zamiera na osobliwości końcowej. Brzeg czasoprzestrzeni tego modelu składa się tylko z osobliwości. Rys. 3 przedstawia tzw. otwarty model Friedmana-Lemaître’a (z $k = 0$ lub $k = -1$). Ewolucja tego modelu zaczyna się od osobliwości początkowej i trwa w nieskończoność. Brzeg czasoprzestrzeni modelu otwartego składa się z osobliwości początkowej, punktów i^+, i^0 oraz prostej J^+. Interpretacja punktów i^+, i^0 i prostej J^+ jest taka sama jak w przestrzeni Minkowskiego.

Na rys. 4 widzimy — dla porównania — ewolucje czasowe zamkniętego ($k = +1$) oraz otwartych ($k = 0$, -1) modeli Friedmana-Lemaître’a.

Odwzorowanie konforemne zastosował do kosmologii Roger Penrose [1]. Odwzorowanie to ma jedną, bardzo ważną własność: zachowuje ono geometrię krzywych przedstawiających historie fotonów. Teorię względności można by, w pewnym sensie, nazwać teorią rozchodzenia się sygnałów świetlnych, stąd wielkie znaczenie przekształcen konforemnych w tej teorii.

Szczególnym zainteresowaniem w kosmologii cieszy się problematyka osobliwości. Jest to zupełnie zrozumiałe. Wszystko przecież wskazuje na to, że od osobliwości zaczęła się trwająca obecnie ewolucja Kosmosu..Powstała zatem potrzeba wydzielenia z brzegu konforemnego czy też z brzegu kauzalnego tylko tych części, które reprezentują osobliwości. Zagadnienie zostało rozwiązane przez G. G. Schmidta [3], który skonstruował tzw. brzeg osobliwy (w angielskiej literaturze: b-boundary). Konstrukcja Schmidta odznacza się matematycznym pięknem i umożliwia dalsze prace teoretyczne nad klasyfikacją i zrozumieniem natury osobliwości (np. [4]—[8]).

Jak już wspomnialiśmy, wszystko wskazuje na to, że czasoprzestrzeń, która jest areną naszych dziejów, posiada brzeg osobliwy. Nasz aktualny Wszechświat z dobrym przybliżeniem jest opisywany przez któryś z modeli Friedmana–Lemaître’a rozpoczynających swoją ewolucję od osobliwości. Nic więc dziwnego, że chęć myślowego osiągnięcia tego punktu brzegowego wyznacza tendencje rozwojowe współczesnej kosmologii, i to zarówno teoretycznej, jak i obserwacyjnej.

Wielkim osiągnięciem współczesnej kosmologii jest tzw. standardowy model Wszechświata starający się zrekonstruować, krok po kroku, przebieg kosmicznej ewolucji. Milowe
kroki na drodze wstecz ku brzegowi czasoprzestrzeni czyli w kierunku początkowej osobliwości, zgodnie z tym modelem, przedstawia tabela:

<table>
<thead>
<tr>
<th>Era</th>
<th>Czas od osobliwości</th>
<th>Gęstość g/cm³</th>
<th>Temperatura K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Era galaktyczna:</td>
<td>~10^{10} lat</td>
<td>10^{-31} 10^{-20}</td>
<td>2,7</td>
</tr>
<tr>
<td>Kosmiczne TERAZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powstanie życia na Ziemi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>powstanie gwiazd i planet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>powstanie galaktyk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>promieniowanie tła (wolne fotony)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Era promienista:</td>
<td>10^6 lat</td>
<td>10^{-21}</td>
<td>3000</td>
</tr>
<tr>
<td>Oddzielenie się promieniowania od materii</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rekombinacja wodoru: e^- + p = H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wolne neutrina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>synteza helu (koniec)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>płaźma i promieniowanie w równowadze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Era leptonowa:</td>
<td>10 s</td>
<td>10^4</td>
<td>10^{10}</td>
</tr>
<tr>
<td>Anihilacja e^+ i e^- synteza helu (początek)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oddzielenie się neutrin elektrony i antyelektrony, neutrina i antyneutrina w równowadze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>anihilacja mezonów</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Era hadronowa:</td>
<td>10^-4 s</td>
<td>10^{14}</td>
<td>10^{12}</td>
</tr>
<tr>
<td>Anihilacja nukleonów i antynukleonów</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>płaźma w równowadze termodynamicznej</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oddzielenie się kwarków (?)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>oddzielenie się grawitonów (?)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Era PLANCKA</td>
<td>10^{-44} s</td>
<td>10^{63}</td>
<td>10^{33}</td>
</tr>
<tr>
<td>Kosmologia kwantowa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Osobiwość początkowa (?)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Czas trwania syntezy helu (od ** do *) wynosi ~100 sekund.

Wiemy, że w „erze Plancka” załamuje się ogólna teoria względności i, być może, inne znane obecnie prawa fizyki.

* Nie sposób omawiać tu poszczególnych kroków. Zainteresowanych odsyłam np. do pięknej książki Stevena Weinberga [9].

Jak głęboko możemy iść w czasoprzestrzeni?

Ogólna teoria względności utożsamia geometrię czasoprzestrzeni z polem grawitacyjnym: składowe tensora metrycznego, określającego rodzaj geometrii, zostały zidentyfikowane jako potencjały pola grawitacyjnego. Nic więc dziwnego, że w pierwszych dziesiątkach lat istnienia teorii względności teoretycy badali prawie wyłącznie "tzw. metryczną strukturę czasoprzestrzeni, tzn. strukturę czasoprzestrzeni określoną przez jej tensor metryczny. Wkrótce jednak okazało się, że czasoprzestrzeń posiada bardzo złożoną architekturę; można z niej wyróżnić wiele warstw powiązanych między sobą siatką matematycznych relacji.

I tak, gdy zubożymy czasoprzestrzeń o aksjomat pozwalający mierzyć odległość, znika struktura metryczna czasoprzestrzeni, a ujawnia się jej struktura afiniczna (por. diagram poniżej). Na poziomie struktury afinicznej traci sens na przykład pojęcie długości wektora, ale wektory można jeszcze przesuwać równolegle wzdłuż krzywych.

Struktura afiniczna zawiera w sobie dwie inne struktury: strukturę rzutową i strukturę konforemną. Na poziomie struktury rzutowej definiuje się krzywe, które w teorii względności służą jako historie obserwatorów lub cząstek materialnych. Przy pomocy pojęć zaczerpniętych z tej struktury w teorii względności definiuje się tzw. swobodny spadek ciał czyli ruch pod wpływem bezwładności. Na poziomie struktury konforemnej definiuje się krzywe, które potem służą jako historie fotony. Struktura konforemna, jak już widzieliśmy uprzednio, jest ścisłe związana z empirycznie stwierdzonym faktem istnienia w przyrodzie nieprzekraczalnej prędkości światła.

Jeśli w zasadzie niezależne od siebie struktury — rzutową i konforemną — uzgodnić ze sobą przez przyjęcie odpowiedniego aksjomatu, stają się one strukturą afiniczną.

Odrzucając stopniowo kolejne aksjomaty dochodzimy wreszcie do najprostszej struktury. Jest nią struktura rozmaitości (różniczkowej). Rozmaistością, mówiąc z grubsza, jest jakikolwiek zbiór punktów posiadających następujące własności: (1)
każdy punkt ma otoczenie, (2) każde otoczenie można pokryć siatką współrzędnych; otoczenie wraz z pokrywającą go siatką współrzędnych nazywa się lokalnym układem współrzędnych, (3) jeżeli dwa otoczenia przecinają się, to na ich części wspólnej można przechodzić od jednego lokalnego układu współrzędnych do drugiego, tam i z powrotem, w sposób odpowiednio gładki (w sposób ciągły i różniczkowolny). Struktura rozmaitości jest niezmiernie uboga. Gdybyśmy ją jeszcze zubożyli, otrzymalibyśmy zbiór punktów, na którym nie dałoby się już uprawiać żadnej fizyki.

Naszkicowaną powyżej architekturę czasoprzestrzeni przedstawia następujący diagram:

```
struktura metryczna
  ↓        ↓
struktura afiniczna  aksjomat zgodności
  ↓        ↓
struktura rzutowa  struktura konforemna
  ↓        ↓
struktura rozmaitości
```

Architektura czasoprzestrzeni była badana przez wielu geometrów i relatywistów, ale związki pomiędzy poszczególnymi strukturami najpełniej ustalili: J. Ehlers, F. A. Pirani i A. Schild [10].

Struktura rozmaitości jest najgłębszą warstwą całej fizyki makroskopowej. Każda makroskopowa teoria fizyczna opiera się na założeniu, że czasoprzestrzeń jest rozmaitością. Właśnie temu założeniu odpowiada intuicyjnie wyobrażenie o ciągłości przestrzeni i czasu. Wiemy jednak, że na pewnym etapie badań fizyka makroskopowa musi się załamać, by ustąpić miejsca prawom fizyki kwantowej. Mówiliśmy już, że dość często nie posiadamy zadowalającej kwantowej teorii grawitacji, ale istnieją poważne poszlaki, że gdy taka teoria powstanie, będzie ona „pracowała” nie w ciągłej lecz w skwantowanej czasoprzestrzeni. Czasoprzestrzeń taka nie będzie miała struktury rozmaitości, ale tak jak poziom makro powstaje przez uśrednienie wielkiej liczby zjawisk mikro, podobnie struktura rozmaitości winna powstawać przez uśrednienie nieznanych dotychczas kwantowych poziomów „pod-rozmaitościowych".
Konieczność poziomów „pod-rozmaitościowych” ujawnia się przede wszystkim na osobliwym brzegu czasoprzestrzeni. Poza erą Plancka, w pobliżu początkowej osobliwości i w ostatnich fazach kolałpu grawitacyjnego struktura rozmaitości zauważa się, pęka. Dalej są znaki zapytania, które pozostaną tak długo, dopóki nie wnikniemy pod rozmaitościowy poziom czasoprzestrzeni.

Podobne efekty rodzenia się par cząstka-antycząstka z silnie zakrzywionej czasoprzestrzeni w pobliżu początkowej osobliwości były już wcześniej rozważane przez Zeldowicza [13]. Zacytujmy na koniec wypowiedź Hawkinga:

„Wielki wybuch (Wszechświata) przypomina eksplozję czarnej dziury, z tym, że odbywa się na znacznie większą skalę. Można się spodziewać, iż zrozumienie, w jaki sposób czarna dziura tworzy cząstki doprowadzi do analogicznego zrozumienia, w jaki sposób w wielkim wybuchu powstało wszystko, co istnieje we Wszechświecie”. [14]

* * *

Zbyteczne jest zastrzeganie się, że przedstawiony powyżej zespół zagadnień nie zawiera wszystkich aktualnych problemów kosmologii. Te a nie inne zagadnienia zostały wybrane nie tylko z racji osobistych zainteresowań autora; należy przypuszczać, że właśnie te, „brzegowe problemy” kosmologii zapoczątkują nową revolucję w fizyce.
POCHODZENIE I ROLA KSIĘŻYCA W ROZWOJU ŻYCIA I NAUKI NA ZIEMI

W artykule przedstawiamy oryginalną hipotezę tłumaczącą pochodzenie Księżyca oraz rolę, jaką odegrał on zarówno w procesie biogenezy na Ziemi jak i ewolucji nauki ziemskiej. Autorem hipotezy jest znany astronom australijski dr Cider Drinkier. Przyjaznym kontaktom zawdzięczamy możliwość pierwodruku jego hipotezy. Poświęcone jej obszerne studium ukaza się dopiero pod koniec bieżącego roku w renomowanym perio dyku nowozelandzkim [1].

Hipoteza dra Drinkera, udostępniona Czytelnikom „Uranii” za jego uprzejmą zgodą, spotka się — być może — z zarzutem eklektyzmu. Trudno z takim zarzutem polemizować a priori: celem autorów jest jedynie wskazanie na udokumentowane publikacjami fakty, które zaświadczają słuszność przedstawia nej hipotezy. Z wdzięcznością natomiast przyjmiemy uwagi...
krytyczne zgłoszone przez Czytelników w dyskusji, której —
miemy nadzieję — „Urania” użyczy miejsca.

Pierwszym impulsem — jak pisze dr Drinker [2] — który
podsunął mu ideę jego hipotezy, był znany skądinąd fakt uni-
katowości Księżyca mierzonej skalą jego podobieństwa do in-
nych satelitów planet Układu Słonecznego. Od dawna wiado-
mo, że masa Księżyca jest niezwykle duża, jeśli wyrazi się ją
w jednostkach masy planety macierzystej planety — Ziemi.
Masa Księżyca wynosząc aż 1/81 masy Ziemi jest wyjątkiem
wśród innych satelitów — istnieją podstawy, żeby domni-
emywać, iż jest to przypadek odosobniony w skali szerszej, to
jest dotyczy nie tylko naszego układu planetarnego. Sugerują
to znane badania przeprowadzane nad komputerową symula-
cją procesu planetogenezy; rozpoczął je w swoim czasie Dole
[3], a niedawno powtórzyli je i rozszerzyli Bond i Martin [4].
W żadnym z otrzymywanych przez tych autorów modelu ukła-
du planetarnego nie wystąpiły ciała, które mogłyby odpowia-
dać podwójnej w istocie rzeczy planecie Ziemia-Księżyc. Uw-
zględniając ogólne podobieństwo morfologiczne generowanych
komputerowo systemów planetarnych z naszym Układem Sło-
neecnym trudno się oprzeć wnioskowi rzeczywistej unikato-
wości tak masywnego (relatywnie) jak Księżyca satelity. Nikłe
prawdopodobieństwo powtóżenia się tego fenomenu zostało
również potwierdzone przez Karaczencewa [5].

Pozostańmy jeszcze przy faktach, które legły u podstaw
hipotezy C. Drinkera. Wiadomo, że względnie duża masa Księ-
życa sprawia, iż w akwenach ziemskich występuje ze szcze-
gólną intensywnością zjawisko pływów. Ich zasadnicze znac-
czenie dla genezy życia na Ziemi wykazał już Turcotte [6].
Przypomnijmy więc jedynie, że to właśnie pływy umożliwi-
y przyspieszenie ewolucji związków organicznych zawartych
w tzw. pierwotnym bulionie. Ewolucja mogła bowiem zacho-
dzieć w płytkich basenach zalewanych okresowo przez wody
oceamu, przez co w basenach tych stale odnawiane były zasoby
substratów biochemicznych. Co więcej — energia pływów umo-
żliwało właśnie powstanie skomplikowanych białek. Pływy wy-
niosły również na ląd pierwotne organizmy wodne, one zaś —
ewoluując — dały początek lądowej gałęzi życia. Gdyby nie
pływy, na Ziemi istniałby może Rozum (ośmiornice?) — na
pewno jednak nie powstałaby cywilizacja naukowo-techniczna.
W tym właśnie miejscu wkraczamy w jądro hypotezy C. Drin-
kera. Mianowicie twierdzi on, że nie jest przypadkiem, iż wła-
śnie tak masywny satelita obiega Ziemię i to po takiej, a nie

Przedstawiciele jednej z owych prastarych cywilizacji, wychowując w proces „urządzania” Galaktyki mogli zauważyć, że nowopowstałej planecie — Ziemi — grozi całkowicie zahamowanie procesów biogenezy, a w najlepszym razie — ograniczenie ewolucji organizmów żywych wyłącznie do hydrosfery. Postępując w myśl scenariusza, którego ogólny zarys przedstawił Ball [12], supercywilizacja ograniczyła swój wpływ do prostej jak na jej możliwości (por. wyżej) operacji przesunięcia makroplanetoidy Luny, którą pierwotnie był Księżyc (co udowodniono porównując albedo typowych planetek z albedem Księżyca), na orbitę okołoziemską. Dalsza ingerencja była już zbyt zbyteczna, ponieważ redukująca atmosfera pra-Ziemi gwarantowała wcześniejsze czy późniejsze wzmożenie ewolucji chemicznej w jej hydrosferze. Po utworzeniu podwójnej planety ciąg dalszy dramatu pod tytułem „ŻYCIE” był już łatwy do przewidzenia: ewolucja biochemiczna — pierwsze organizmy samoreprodukujące się — ich ewolucja w środowisku wod-
nym — organizmy wyższe — ich wyjście na ląd (dzięki pływom!) — zróżnicowanie dróg ewolucyjnych organizmów wodnych i lądowych — ewolucja według praw doboru naturalnego — mutacje — ... — Homo Sapiens.

Nie jest to jednak pełna lista odkryć, którą niesie z sobą hipoteza dra Drinkera. Winniśmy jeszcze przedstawić Czytelnikom wyjaśnienie zagadnienia, o którym jest mowa w drugiej części tytułu artykułu.

PROGRAMY OBLICZEŃ ASTRONOMICZNYCH
NA KALKULATOR ELEKTRONICZNY

Wstęp

Nową formą działalności miłośników astronomii może być tworzenie programów obliczeniowych na elektroniczny kalkulator matematyczny. W artykule opisano trzy programy przetwarzania danych, które dotyczą obliczania:

— współrzędnych heliograficznych plam na Słońcu,
— współrzędnych prostokątnych ciała poruszającego się po orbicie eliptycznej,
— efemeryd.

gadnieniach translacji wykorzystuje się zapis odwrotny zwany właśnie ONP.

System ONP oparty jest na dwóch ważnych zasadach: tzw. priorytetu operatorów i unikania nawiasów. Przez priorytet operatorów należy rozumieć, podobnie jak w normalnej notacji, zasadę wykonywania działań w kolejności „ważności” lub „wagi” znaku. W ONP największą wagę ma potęgowanie, a następnie równoważne operatory mnożenia, dzielenia i negacji. Na końcu są równoważne operatory dodawania i odejmowania. Nawiasy w ONP mają zerową wagę i nie są używane.

Obliczanie współrzędnych heliograficznych plam na Słońcu

Program dotyczy przeliczania pozycji plam na Słońcu ze współrzędnych prostokątnych na współrzędne heliograficzne. W wyniku pomiarów negatywowych obrazów Słońca otrzymuje się współrzędne prostokątne plam \(x \) i \(y \), które należy wyrazić w jednostkach promienia tarczy Słońca. Do realizacji programu potrzebne są następujące dane:

- \(B_0 \) — heliograficzna szerokość pozornoego środka tarczy Słońca,
- \(P_0 \) — kąt między osią obrotu Słońca i kołem deklinacyjnym,
- \(L_0 \) — heliograficzna długość południka centralnego tarczy Słońca względem południka Carringtona,
x, y — współrzędne prostokątne plamy wyznaczone z pomiarów.

Korzystając ze wzorów zawartych np. w książce P. G. Kulikowskiego „Poradnik miłośnika astronomii” (PWN, 1976) obliczenia wykonujemy w następującej kolejności:

1. Szerokość heliograficzna — $β$
2. Długość heliograficzna względem południka centralnego tarczy Słońca — $ε$
3. Długość heliograficzna względem południka Carringtona — $λ$.

Program zawiera 54 kroki i może być zrealizowany w czasie około 2 minut.

Obliczanie współrzędnych prostokątnych ciała poruszającego się po orbicie eliptycznej

Program obejmuje:
— rozwiązanie równania Keplera,
— obliczenie prostokątnych współrzędnych orbitalnych,
— obliczenie promienia wodzącego,
— obliczenie prędkości ciała na orbicie.

Do realizacji programu niezbędne są następujące elementy orbitalne:

a — wielka półos,
e — mimośród orbity,
M_0 — anomalia średnia ciała na orbicie w momencie t_0,
T_0 — moment przejścia przez perycentrum,
m — masa ciała, praktycznie przyjmuje się, że $m = 0$.

Korzystając ze wzorów zawartych np. w książce S. Wierzbickiego „Mechanika nieba” (PWN, 1973) obliczenia wykonujemy w następującej kolejności:

1. Średni ruch dzienny — n,
2. Anomalia średnia dla danego momentu t — M,
3. Równanie Keplera, rozwiązujemy je metodą kolejnych przybliżeń,
4. Orbitalne współrzędne prostokątne ciała — $ξ, η$,
5. Promień wodzący — r,
6. Składowe prędkości ruchu po elipsie — $ξ, η$,
7. Prędkość ciała na orbicie w danym momencie t — V.

Program zawiera 142 kroki i może być zrealizowany w czasie około 10 minut.
Obliczanie efemeryd

Program ma zastosowanie przy obliczaniu efemeryd w ruchu ciał po orbitach eliptycznych, parabolicznych i hiperbolicznych. Wynikiem przetwarzania jest w momencie \(t \) rektascen.sja \(\alpha \) i deklinacja \(\delta \). Do realizacji programu niezbędne są następujące dane:

\[
\begin{align*}
\Omega & \quad – długość węzła wstępującego, \\
\omega & \quad – długość perycentrum w orbicie, \\
i & \quad – nachylenie płaszczyzny orbity do płaszczyzny równika niebieskiego, \\
\varepsilon & \quad – nachylenie płaszczyzny ekliptyki do płaszczyzny równika niebieskiego, \\
\xi, \eta & \quad – prostokątne współrzędne orbitalne ciała na orbicie, \\
X_0, Y_0, Z_0 & \quad – prostokątne współrzędne geocentryczne Słońca dla danego momentu \(t \) odniesione do wybranej epoki \(T_0 \).
\end{align*}
\]

Korzystając ze wzorów, które można znaleźć np. w książce „Sprawozczone rukowodstwo po niebiesnoj miechanikie i astro-dinamikie” pod redakcją G. N. Duboszina (radzieckie wydawnictwo Nauka, 1976) obliczenia wykonujemy w następującej kolejności:

1. Heliocentryczne prostokątne współrzędne równikowe \(X, Y, Z \),

2. Współrzędne równikowe: rektascensja — \(\alpha \)
deklinacja — \(\delta \).

Program zawiera 208 kroków i może być zrealizowany w czasie około 15 minut.

Dwa ostatnie programy zostały sprawdzone na przykładzie asteroidy Eudory (numer katalogowy 217). Przewiduje się opracowanie dalszych programów do obliczania efemeryd, a także wyznaczania elementów orbity z zaobserwowanych współrzędnych równikowych.

Od Redakcji

Zapytania w sprawie szczegółów omówionych programów oraz ewentualne prośby o ich udostępnienie (np. w drodze wymiany) prosimy kierować bezpośrednio do Autora: Zbigniew Rzepka, ul. Grochowska 106, m. 3, 60-335 Poznań.
KRONIKA

Kopie Słońca w promieniu 25 parseków od niego (i nie tylko)

Pierwszym celem poszukiwań za sygnałami hipotetycznych cywilizacji pozaziemskich powinny być znajdujące się na ciągu głównym gwiazdy pojedyncze, o typie widmowym G2V — czyli po prostu repliki Słońca. Z nadzieją, że — per analogiam — otoczone są one planetami, w tym przynajmniej jedną obdarzoną życiem rozumnym, dysponującym do tego zdolnością prowadzenia konwersacji międzygwiazdnych, podajemy poniżej listę takowych, leżących w promieniu 25 parseków od Słońca i dedykujemy ją polskim placówkom radioastronomicznym z życzeniami powodzenia, które — jeśli osiągnięte — stanowiliby piękną kontynuację zeszłorocznych sukcesów odniesionych na arenie międzynarodowej. Numer gwiazdy w kolumnie pierwszej jest jej oznaczeniem w katalogu R. Wooley’a i in. (Royal Observatory Annals, no. 5, 1970), RA i Dekl. to odpowiednio rektascensja i deklinacja dla epoki 1950, D — odległość w latach światła, V_r — prędkość radialna w km/s. Typ widmowy w każdym przypadku to G2V. Pominiete zostały podwójne spektroskopowe (numer w katalogu Wooley’a: 13), subgiganty (19, 9244, 9423), gwiazdy opisane jako posiadające towarzyszy (838, 9702, 9819), oraz te, których typ widmowy jest niepewny (9090, 9433, 9691).

<table>
<thead>
<tr>
<th>Nr</th>
<th>RA</th>
<th>Dekl</th>
<th>D</th>
<th>V_r</th>
</tr>
</thead>
<tbody>
<tr>
<td>9012</td>
<td>00 20 18</td>
<td>-12 92,2</td>
<td>66,47</td>
<td>-6,8</td>
</tr>
<tr>
<td>67</td>
<td>01 38 44</td>
<td>+42 21,8</td>
<td>37,44</td>
<td>+4,0</td>
</tr>
<tr>
<td>136</td>
<td>03 16 41</td>
<td>-62 46,0</td>
<td>36,80</td>
<td>+12,1</td>
</tr>
<tr>
<td>243</td>
<td>06 42 52</td>
<td>-27 17,6</td>
<td>53,40</td>
<td>-14,7</td>
</tr>
<tr>
<td>358</td>
<td>09 45 22</td>
<td>+46 15,3</td>
<td>49,35</td>
<td>+5,2</td>
</tr>
<tr>
<td>376</td>
<td>09 58 08</td>
<td>+32 10,2</td>
<td>60,32</td>
<td>+56,0</td>
</tr>
<tr>
<td>9346</td>
<td>11 05 32</td>
<td>-29 54,1</td>
<td>67,86</td>
<td>+11,2</td>
</tr>
<tr>
<td>9434</td>
<td>13 11 34</td>
<td>+56 58,4</td>
<td>65,14</td>
<td>-8,8</td>
</tr>
<tr>
<td>582</td>
<td>15 18 25</td>
<td>-48 08,1</td>
<td>50,11</td>
<td>-69,8</td>
</tr>
<tr>
<td>9537</td>
<td>15 59 08</td>
<td>+33 27,2</td>
<td>77,55</td>
<td>+18,4</td>
</tr>
<tr>
<td>9589</td>
<td>17 15 40</td>
<td>-75 17,7</td>
<td>70,81</td>
<td>+58,9</td>
</tr>
<tr>
<td>776</td>
<td>20 00 34</td>
<td>-67 27,2</td>
<td>62,64</td>
<td>-12,2</td>
</tr>
<tr>
<td>9777</td>
<td>22 14 45</td>
<td>+12 38,8</td>
<td>77,55</td>
<td>-29,9</td>
</tr>
</tbody>
</table>

Aby utemperować przedwczesny optymizm należy zaznaczyć, że przeprowadzone niedawno przez J. Hardorpę (1) obserwacje gwiazd typu G2V wykazały, iż absorpcyjne szczegóły ich widm nadfioletowych są zawsze słabiej zaznaczone, niż jest to w przypadku Słońca. Znaleziono co prawda dwie gwiazdy (HR 7504 i HR 2290), które sądząc po widmie w nadfiolecie są bliźniakami Słońca — nie należą one jednak do klasy G2V. Wynika z tego, że albo Słońce zawiera więcej metali niż jakakolwiek gwiazda G2V wymieniona w Bright Stars Catalogue, albo też nie jest ono typowym przedstawicielem klasy G2V. Taka alternatywa, bez względu na wybór dokonany z oferowanych przez nią możliwości,
może być kolejnym astronomicznym wyróżnikiem niszy ekologicznej, wewnątrz której powstało życie ziemskie. Kolejnym, bo istnienie innych jeszcze sugerował już I. D. Karaczencew w pracach (2) — łatwiejszej w czytaniu lecz trudniejszej do zdobycia i (3) na odwrót. Są to według niego:

— fakt, że Ziemia posiada bardzo masywnego satelitę (w liczbach względnych oczywiście),
— fakt przynależności Słońca do podsystemu płaskiego,
— fakt, że Galaktyka należy do bardzo dużych systemów gwiazdnyczych (sądząc po jej rozmiarach liniowych),
— fakt, że Lokalny Układ Galaktyk jest systemem stacjonarnym. Istnienie dodatkowego wyróżnika geologicznego zauważył autor notatki (4), według którego proces biogenezy zajść mógł dzięki ruchom płyt litosferycznych, nieustannie wynoszącym fragmenty skorupy ziemskiej nad powierzchnię Oceanu Światowego. Gdyby nie one, obszary lądowe uległyby prędzej czy później erozji, a Ziemia byłaby bez reszty pokryta wodą.

(2) Karaczencew I. D., Priroda, nr 10, 1974, 92.
(4) K. S., Problemy, nr 9, 1976, 65.

ZBIGNIEW PAPROTYNY

Kwazary jądrami galaktyk eliptycznych?

Od momentu odkrycia kwazarów (1963) większość astronomów uważała je za obiekty związane w ten czy inny sposób z galaktykami, głównie za jasne jądra bardzo odległych galaktyk. Najdobitniej pogląd ten wyrazili Sandage i Kristian w roku 1973 (1). Przeanalizowali oni warunki pozwalające na obserwację peryferyjnych obszarów tych galaktyk, których jądrami byłyby kwazary. W roku 1975, za pomocą spektrografu umieszczonego w ognisku pięciometrowego teleskopu Hale’a przeprowadzono obserwacje kwazara PHL 1070. Dla ekranizowania promieniowania kwazara zastosowano diafragmę pierścieniową. Aparatura rejestrowała też promieniowanie tia nieba, co umożliwiło uwzględnienie jego wkładu w blask otaczającego kwazar płaszcza gwiazdnego. Stwierdzono w ten sposób, że wizualna wielkość gwiazdowa kwazara sięga 16,3, zaś otaczającej go galaktyki 19,0. Linie emisyjne obecne w widmie kwazara wskazują na redshift Z = 0,076 co odpowiada odległości 300 Mpc. PHL 1070 jest więc obiektem stosunkowo bliskim, jako że znane są już kwazary z Z większym od 3. Redshift galaktyki otaczającej kwazar, zmierzony na podstawie linii absorpcyjnych w jej widmie, okazał się równy 0,067, co w granicach błędu pomiarowego odpowiada redshiftowi PHL 1070. Oznacza to, że kwazar i otaczająca go galaktyka znajdują się w jednakowej odległości i tworzą jeden układ fizyczny. Dodatkowo, rozkład energii w widmie ciągłych galaktyki wokół PHL 1070 jest identyczny z obserwowanym w widmie typowej galaktyki eliptycznej. Jej jasność absolutna jest również zbliżona do tej, która cechuje przeciętne galaktyki eliptyczne (typowa wartość M = —20,3). Można więc przyjąć
za dowiedzione, że kwazar PHL 1070 jest w istocie jądrem odległej galaktyki eliptycznej (2).

PAPROTNY

Ekosfera Słońca, efekt cieplarniany i wzór Drake’a

M. N. Hart przeprowadził niedawno modelowanie ewolucji atmosfery Ziemi za pomocą EMC, od momentu położonego 4,5 miliarda lat temu. Oceniono między innymi szerokość strefy położonej wokół Słońca, sprzyjającej powstaniu i rozwijaniu życia. Obliczenia wskazują, że gdyby Ziemia kazała wokół Słońca w odległości o 1 procent większej niż jest w rzeczywistości, wtedy 2 miliardy lat wstecz nastąpiłyby pełne jej zlo- dowacenie. Orbita bliższa Słońcu o około 5 procent sprawiłaby iż na wczesnych etapach ewolucji Ziemi nastąpiłyby — również w sposób nie-odwrażalny — gwałtowny wzrost efektu cieplarnianego, zaś warunki atmosferyczne Ziemi w dużym stopniu przypominałyby Wenus. (1).

Warto tutaj przypomnieć pracę S. I. Rasoola i C. de Bergha (2), którzy ocenili, iż uniemożliwiający proces biogenezy efekt cieplarniany byłby lolem Ziemi, gdyby jej orbita leżała o 6—10 milionów kilometrów bliżej Słońca, niż jest to w rzeczywistości. Tą właśnie pracę oraz program komputerowy autorstwa S. Dole’a (3) dla modelowania procesu planetogenezy, wykorzystali niedawno A. Bond i A. R. Martin (4) w celu przebadania konsekwencji jakie niesie zastosowanie ostrego kryterium dystansowego planeta — gwiazda dla oceny liczby planet będących potencjalnymi siedliskami życia w Galaktyce. Według nich istnieje w niej około 10 milionów planet „zamieszkalnych”, to znaczy obdarzonych warunkami fizycznymi przypominającymi ziemske. Na liczbę takich planet, okrążających gwiazdy przebywające na ciągu głównym wystarcza- jąc długo, by życie rozumne mogło powstać na planetach wokół nich, otrzymano 4,5 miliona.

ZBIGNIEW PAPROTNY

Szanse odkrycia sygnału rozumnego

Jeśli dana cywilizacja kosmiczna dysponuje instrumentami do poszukiwań innych cywilizacji równoważnymi klasą zaprojektowanemu na Ziemi Cyklopowi, wtedy może dokonać w miarę pełnego przeglądu nieba w stosunku krótkim czasie rzędu kilkudziesięciu lat. Po jego upływie, w przypadku odkrycia sygnału rozumnego, może zostać podjęta decyzja o rozpoczęciu emisji kierunkowej, tzn. skierowanej ku nadawcom odebranego sygnału. Szansa na pozytywny rezultat fazy poszukiwaczej jest jednak znacznie mała, co Bates (1) argumentuje analizą najbardziej prawdopodobnego rozkładu przestrzennego cywilizacji i wymagań energetycznych stawianych przed nadajnikiem, jeśli ma on da- wać rozsądną gwarancję powodzenia. Jeśli więc w pierwszej fazie poszukiwań sygnały nie zostaną odkryte, wtedy cywilizacja będzie zmu-
szona podjąć decyzję tyczącą celowości ustanowienia nadajnika wszechkierunkowego, emitującego „własne” sygnały wywoławcze. Według oce­ny Batesa nie zdecyduje się na to żadna cywilizacja, ponieważ nadajnik musiałby być projektowany ze świadomością, iż czas pomiędzy nada­niem sygnału a nadejściem wysoce niepewnej odpowiedzi, będzie rzędu dziesiątków tysięcy lat — zakładając średnio tylko realistyczną ocenę liczby cywilizacji będących potencjalnymi rozmówcami. Jest to jego zda­niem okres zbyt długi na to, by skłonić organa decyzyjne cywilizacji do wyrażenia zgody na podjęcie podobnego przedsięwzięcia (i jego wielo­wiekowe finansowanie). Dlatego też Bates wprowadza do wzoru Drake’a parametr \(f_r\) oznaczający ułamek tych cywilizacji, które zdecydowały się podjąć wysiłek przeprowadzenia pełnego przeglądu nieba za emi­sjami rozumnymi.

ZBIGNIEW PAPROTYNY

Zmiany jasności Neptuna

S. R. BRZOSTKIEWICZ

Rotacja Urana i Neptuna

Za pomocą czterometrowego teleskopu obserwatorium na Kitt Peak udało się uzyskać doskonałe spektrogrami Urana i Neptuna. Z nachy­lenia linii widmowych Sethanne H. Hayes i Michael J. S. Belton wy­znaczyli okresy obrotu obu planet, otrzymując wartości znacznie od­biegające od dotąd przyjmowanych. O ile bowiem czas rotacji Urana ustalony na podstawie dawniejzych pomiarów wynosił 10,8 godzin, to według nowych obserwacji trwa aż 24 ± 3 godziny. Neptun natomiast ma się obracać dokoła swej osi raz na 22 ± 4 godziny, podczas gdy według dawnych pomiarów dokonywał tego w ciągu 15,8 godzin. Nowa wartość obrotu Urana niezłe się zgadza ze współczesnymi ocenami jego optycznego i dynamicznego spłaszczenia. Ale dla Neptuna różnica jest zbyt wielka i prawdopodobnie pomiar trzeba będzie powtórzyć. Obser­wacją wykonana w lepszych jeszcze warunkach wykazałaby może, że czas jego rotacji mieści się w granicach od 15 do 18 godzin.

S. R. BRZOSTKIEWICZ
OBSERWACJE

Raport XI 1978 o radiowym promieniwaniu Słońca

Średnie strumienie miesiąca: 12,1 (127 MHz, 30 dni obserwacji) i 158,0 (2800 MHz, 25 dni). Średnia miesięczna wskaźników zmienności — 0,37. 16 zjawisk niezwykłych na częstotliwości 127 MHz stwierdzono w dniach 5—13 oraz 27 i 29 XI; były to głównie burze szumowe (11 razy). Największy strumień (1400 su) zmierzono w momencie maksimum wielkiego wybuchu (47 GB) o godz. 8.59 UT dnia 11 XI. Na częstotliwości 2800 MHz nie zaobserwowano znaczących wybuchów.

Toruń, 6 grudnia 1978 r.

HENRYK WEŁNOWSKI, KAZIMIERZ M. BORKOWSKI

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 11/78

Aktywność plamotwórcza Słońca w listopadzie 1978 r. znacznie spadła w porównaniu do miesiąca poprzedniego. Średnia miesięczna liczba Wolfa (month mean Wolf Number) za miesiąc listopad 1978 r \(R = 91,1 \)

Obserwowany spadek jest przejściowy i spowodowany normalną fluktuacją liczb plamowych. W listopadzie na widocznej tarczy Słońca odnotowano powstanie 27 nowych grup plam słonecznych. Tylko dwie z zaobserwowanych grup osiągnęły maksymalną powierzchnię ok. 900 jedn. Pozostałe grupy były małe lub średniej wielkości. Wskaźnik zmienności plamowej cyklu do kwietnia 1978 r. wynosił \(Z = 15,8 \).

Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc

listopad 1978 r. \(S = 926 \cdot 10^{-5} \)
Dzienna liczby plamowe (Daily Wolf Numbers) w listopadzie 1978 r.:
99, 118, 152, 116, 100, 94, —, 83, 103, 87, 87, 71, 86, 69, 67, 84, 116, 100, 90, 76, 67, —, 74, 76, 77, 94, —, —, —.

Dąbrowa Górnicza, 9 grudnia 1978 r.

WACŁAW SZYMAŃSKI

Wiadomości: Miło nam zakomunikować, że nawiązaliśmy kontakt z Astronomische Jugendclub Peter Reinhard, Wien, Österreich. Kontakt polegający początkowo na wymianie własnych publikacji (Komunikat CSOS — Die Sternenrundschau) przeistacza się w szerszą współpracę w dziedzinie obserwacji plam słonecznych.

Obserwacje komety Westa (1975 n) przeprowadzone w 1976 r.

<table>
<thead>
<tr>
<th>Data 1976</th>
<th>CSE</th>
<th>Średni głowy</th>
<th>Jasność ogólna jądra w mag.</th>
<th>War. kocz</th>
<th>War. obs.</th>
<th>Uwagi</th>
</tr>
</thead>
<tbody>
<tr>
<td>III. 4</td>
<td>h m</td>
<td>h m</td>
<td>1'</td>
<td>0 — 1</td>
<td>7°</td>
<td>A, 1, 2</td>
</tr>
<tr>
<td>11</td>
<td>05 03 — 05 33</td>
<td>1,5</td>
<td>1,5 — 2</td>
<td>3</td>
<td>2, D, E</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>12</td>
<td>04 30 — 05 06</td>
<td>1</td>
<td>1,5 — 2</td>
<td>4</td>
<td>2,5, D, E</td>
<td>2, 3</td>
</tr>
<tr>
<td>13</td>
<td>04 32 — 05 00</td>
<td>2</td>
<td>4,5</td>
<td>7</td>
<td>2,5</td>
<td>A, 3</td>
</tr>
<tr>
<td>25</td>
<td>04 35 — 04 40</td>
<td>2,5</td>
<td>2</td>
<td>6,5</td>
<td>2,5</td>
<td>A, 3</td>
</tr>
<tr>
<td>29</td>
<td>03 43 — 04 05</td>
<td>2</td>
<td>4,5</td>
<td>7</td>
<td>1,8</td>
<td>A, 3</td>
</tr>
<tr>
<td>IV. 1</td>
<td>h m</td>
<td>h m</td>
<td>1,5</td>
<td>4,7</td>
<td>1,8</td>
<td>A, 3</td>
</tr>
<tr>
<td>2</td>
<td>03 30 — 03 55</td>
<td>2</td>
<td>4,8</td>
<td>7</td>
<td>1,8</td>
<td>A, 3</td>
</tr>
<tr>
<td>3</td>
<td>03 22 — 03 44</td>
<td>2</td>
<td>4,8</td>
<td>7</td>
<td>1,8</td>
<td>A, 3</td>
</tr>
<tr>
<td>6</td>
<td>03 20 — 03 40</td>
<td>2,5</td>
<td>5,2</td>
<td>7,3</td>
<td>1,0</td>
<td>B, 3</td>
</tr>
<tr>
<td>10</td>
<td>03 07 — 03 22</td>
<td>1,5</td>
<td>5,9</td>
<td>7</td>
<td>1,0</td>
<td>B, 3</td>
</tr>
<tr>
<td>11</td>
<td>03 06 — 03 22</td>
<td>2</td>
<td>5,8</td>
<td>8</td>
<td>0,8</td>
<td>A, 3</td>
</tr>
<tr>
<td>12</td>
<td>03 00 — 03 20</td>
<td>2</td>
<td>6,1</td>
<td>8</td>
<td>0,4</td>
<td>D, G</td>
</tr>
<tr>
<td>21</td>
<td>02 48 — 03 12</td>
<td>6,8</td>
<td>20'</td>
<td>8</td>
<td>0,4</td>
<td>C, G</td>
</tr>
<tr>
<td>27</td>
<td>02 35 — 01 54</td>
<td>6,8</td>
<td>15'</td>
<td>8</td>
<td>0,4</td>
<td>C, G</td>
</tr>
<tr>
<td>30</td>
<td>02 02 — 02 20</td>
<td>7,1</td>
<td>15'</td>
<td>8</td>
<td>0,4</td>
<td>C, G</td>
</tr>
<tr>
<td>V. 3</td>
<td>01 40 — 01 58</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>A, 5</td>
</tr>
<tr>
<td>5</td>
<td>00 32 — 00 37</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>A, 6</td>
</tr>
<tr>
<td>00 12 — 00 15</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>A, 6</td>
<td></td>
</tr>
</tbody>
</table>

Uwagi: 1 — Rozszerzający się, zakrzywiony w lewo warkocz, 2 — jasność trudna do ustalenia, 3 — warkocz prosty, rozszerzający się, bez szczegółów, 4 — długość warkocza trudna do ustalenia ze względu na słabe warunki obserwacyjne, 5 — warkocz prosty, słabo widoczny, 6 — obiekt mglisty, bez warkocza, z trudem dostrzegalny w lornetce.

Miejsce obserwacji: wzgórze Wilka w pobliżu Zamku Książ (wys. 409 m n.p.m.). Obserwacje za pomocą lornetki BINOCTEM 7×50 na statywie. Oceny jasności metodą Nijlanda-Błażki przez porównywanie z obrazami pozagłównkowymi gwiazd. Podane w tabeli wartości jasności są średnimi z kilku ocen. Rozmiary kątowe — przez porównanie z odległościami szerokich par gwiazd.

JERZY SPEIL

KRONIKA PTMA

IX Ogólnopolski Zjazd Obserwatorów Słońca i VII Sesja Astronomiczna w Dąbrowie Górniczej

W imieniu Zarządu Głównego powitał zebranych Dyrektor Biura Tadeusz Grzesio, który zainicjował miłą uroczystość wręczenia odznaczeń za całokształt działalności na rzecz upowszechniania wiedzy astronomicznej poniższym osobom:

Srebrną Honorową Odznaką PTMA odznaczona została Dyrektor Pałacu Kultury Zagłębia Pani mgr Maria Kuśmirek.

Honorowym dyplomem PTMA odznaczeni zostali:
1. Alojzy Lazar — Tarnowskie Góry
2. Mieczysław Szulc — Tuchola
3. Piotr Urbaniński — Zychlin
4. Zbigniew Kieć — Dąbrowa Górnicza
5. Mgr Tadeusz Modrejowski — Dąbrowa Górnicza

Obrady Sesji Astronomicznej rozpoczął dr Stanisław Zięba z Obserwatorium Astronomicznego U.J., wygłaszając odczyt pt. „Radiowe promieniowanie Słońca”. Chociaż radioastronomia uprawiana jest już kilkadiesiąt lat, opracowywane są nowe metody obserwacji i nowe udoskonalone przyrządy, to jednak dla wielu miłośników astronomii
pozostaje ona wciąż jeszcze tajemniczą gałęzią wiedzy astronomicznej. Ciekawy odczyt dra Stanisława Zięby w dużym stopniu przyczynił się do zaznajomienia zebranych z podstawowymi zagadnieniami radiopro­mieniowania Słońca.

Po przerwie obiadowej z bardzo ciekawym odczytem pt. „Słońce a rytmy biologiczne” wystąpił dr Ireneusz Domiński z Astronomicznego Obserwatorium Szerokościowego P.A.N. w Borowcu. Prelegent m.in. przedstawił dowody, jak głęboko sięga wpływ zmian dnia i nocy w życie biologiczne istot żywych. Rytmy, utrwalone przez zmiany oświetlenia Słońcem, pozostają niezmienne i niezależne od zmiany warunków otoczenia.

Następny odczyt na temat „Wybuchy radiowe na Słońcu” wygłosił dr Marek Urbanik z Obserwatorium Astronomicznego U.J. Wybuchy radiowe na Słońcu są zjawiskami stwierdzonymi stosunkowo niedawno. Prelegent bardzo ciekawie i przystępnie przedstawił przebieg tego nie­zwykłego zjawiska.

Odczyty urozmaicone były przezrozczami, fotografiami i rysunkami odręcznymi. Prelegenci udzielali wyjaśnień na liczne zapytania słuchaczy.

 Wieczorem o godz. 18.00 wyjazd autokarem do Z a r e k­Letniska, gdzie zamówione były noclegi i kolacja.

 Drugi dzień Zjazdu odbył się w Słonecznym Obserwatorium Astronomicznym w Z a r k a c h-Letnisku. O godz. 10.00 — zwiedzanie Obser­watorium. O godz. 10.30 — odczyt Przewodniczącego C.S.O.S. Wacława Szymańskiego pt. „Obserwacje plam słonecznych”. Prelegent omówił sposoby obserwacji plam słonecznych konieczne dla otrzymywania pełno­wartościowych wyników.

 O godz. 11.00 rozpoczęło się Seminarium Astronomiczne pt. „Zmiany promieniowania radiowego Słońca”. Seminarium prowadzili dr Marek Urbanik i dr Stanisław Zięba. W ten sposób tematy z pierwszego dnia obrad powiązane zostały w jedną całość zagadnień o promienio­waniu radiowym Słońca.

Obrady w Z a r k a c h-Letnisku sfilmowane zostały przez ekipę Katowickiego Ośrodka Telewizji Polskiej. Reportaż o przebiegu Zjazdu nadvany był przez Telewizję Polską w środę 13 września 1978 r. w lokalnym programie z Katowic o godz. 19.10.

Po przerwie obiadowej o godz. 15.00 odbyła się chyba najbardziej ży­wiolowa i twórcza część Zjazdu — ogólna dyskusja przy czarnej kawie. Chciała była to pofolijeczna część Zjazdu, lecz dopiero ta część pozbawiona była sztywnych rygorów obradowych. Dyskusja była ożywiona, rzeczowa, spontaniczna i nawet drobiazgowa. Wypowiadał się wszyscy obser­watorowie Słońca, a co bardzo ważne, w dyskusji brali udział również
fachowi astronomowie-prelegenci. Dyskutanicy, rozumując doniosłość zagadnienia wprowadzenia do heliofizyki Polskich Liczb Plamowych, jeszcze raz szczegółowo przedyskutowali sposoby notowania obserwacji i sporządzania zestawień i szkiców obserwacyjnych. Niektórzy obserwatorowie, doceniając znaczenie jednolitych obserwacji, zadeklarowali przejęcie na obserwacje ekranowe oraz podawanie szkiców w jednolitej orientacji. Przewodniczący CSOS Waclaw Szymański podał, że już od ubiegłego roku liczby plamowe publikowane w „Uranii” i w „Saturnie” (RFN) są oryginalnymi Polskimi Liczbami Plamowymi. Obliczane są one nieco inaczej, niż to się zwykle robi, i do obliczania ich wykorzystuje się tylko pełnowartościowe obserwacje plam słonecznych tych obserwatorów, którzy właściwie notują wyniki obserwacji, załączając szkice obserwacyjne i mają grupy poniemierowane zarówno na szkicu jak i na zestawieniu. Obserwacje nie odpowiadające tym wymogom są obserwacjami pomocniczymi.

Pewnym urozmaiceniem było wystąpienie Kol. Mieczysława Szulca z odczytem na temat „Słoneczne kamienie w Borach Tucholskich”. Przedstawił on swój pogląd na możliwe znaczenie niezwykłego rozmieszczenia tych kamieni.

Na zakończenie pragnę w imieniu „słoneczników” gorąco podziękować dyrektorowi Pałacu Kultury Zagłębia w Dąbrowie Górniczej p. mgr Marii Kuśmirek za przyjazny stosunek oraz pomoc materialną i organizacyjną przy organizowaniu Zjazdu. Obserwatorowie Słońca pragną też serdecznie podziękować Pani Łucji Szymańskiej, Gospodyni Zjazdu w Żarkach-Letnisku za gościnność.

Pragnę złożyć także gorące podziękowanie Wiceprezesowi Dąbrowskiego Oddziału Panu Janowi Brylskiemu za duży wkład pracy organizacyjnej przy montowaniu Zjazdu.

Kurs „ABC astronomii” w Niepołomicach — 7 VII — 20 VII 1978 r.

Wzorem lat ubiegłych w dniach 7 do 20 lipca 1978 r. ZG PTMA zorganizował w Niepołomicach kurs szkoleniowo-obserwacyjny pod nazwą „ABC astronomii” dla niezaawansowanych miłośników wiedzy o Wszechświecie. W turnusie uczestniczyło 14 osób wraz z kierownikiem, studentem IV roku astronomii UJ, Krzysztofem Włodarczykiem. Wszyscy uczestnicy otrzymali zakwaterowanie w ośrodku wypoczynkowym DOKP w domkach campingowych na skraju Puszczy Niepołomickiej. Koszty pobytu w tym ośrodku pokryły ZG PTMA. Koszty wyżywienia uczestników pokrywały indywidualnie. Zajęcia teoretyczne i obserwacyjne odbywały się w pawilonach Szkolnej Stacji Astronomicznej w Niepołomi-
cach, gdzie młodzi miłośnicy mieli do dyspozycji refraktor Zeiss \(\Phi = 80 \) mm, astrograf \(\Phi = 135 \) mm, teleskop szkolny T 50 × 70, cztery lunetki jeleniogórskie, refraktor Busha oraz sprzęt własny. Niesprzyjające warunki atmosferyczne uniemożliwiały prowadzenie zaplanowanych obserwacji Urana, Neptuna, komety Meiera, meteorów i sztucznych satelitów Ziemi. Regularnie odbywały się wykłady kierownika turnusu oparte na podręczniku „Astronomia ogólna” prof. E. Rybki. Po wykładach odbywały się dyskusje. Wieczorami zbierali się uczestnicy zainteresowani Olimpiadami Astronomicznymi i rozwijali zadania z kilku ostatnich Olimpiad, oraz z podręcznika prof. E. Rybki. W chwilach wolnych od zajęć odbywały się na terenie ośrodka mecze piłki siatkowej oraz na boisku szkolnym mecze piłki nożnej pomiędzy uczestnikami. Powstał nawet zespół piłki nożnej „Kosmos” skupiający najmłodszych dziewięciu miłośników. Drużyna ta występowała bez sukcesu w rozgrywkach o puchar prezesa LZS w Niepołomicach. Tak więc uczestnicy turnusu mogli pożytecznie i przyjemnie spędzić czas.

W kursie uczestniczyli: Tadeusz Sproch (Bielsko-Biała) — najstarszy z miłośników, pełnił funkcję zastępcy kierownika, Piotr Kozak (Wodzisław Śląski), Wiesław Burdzy (Zawiercie), Krzysztof Szwagrzyk (Ligota Wielka), Piotr Lisowski (Kraśnik Fabryczny), Jan Chwała (Palcza), Krzysztof Chyży (Aleksandrow Łódzki), Roman Kempka (Mysłowice), Jacek Zając (Mysłowice), Marek Jeziorski (Krzepice), Grzegorz Wojciechowski (Kielce), Mirosław Sitarz (Biłgoraj), Ireneusz Grining (Wschowa).

KRZYSZTOF WŁODARCZYK

Szkoleniowy turnus obserwacyjny w Niepołomicach

W dniach od 29 lipca do 11 sierpnia br. stacją obserwacyjną w Niepołomicach zawładnęła grupa młodych entuzjastów astronomii. Wiek uczestników zawarty był w wąskim przedziale 16—19 lat. W turnusie udział wzięli: Jaromir Grącki (Biłchownia), Aleksander Trębacz (Jędrzejów), Dariusz Lis (Kielce), Dariusz Peczek (Nowa Dęba), Tomasz Kaczkowski (Sosnowiec), Grzegorz Pazderski (Lublin), Dariusz Kanar (Radzyń Podlaski), Wacław Paleczny (Bielsko-Biała), Tomasz Januszek i Tomasz Liszka (Krzykawa k. Bolesławia). Turnus prowadził niżej podpisany przy organizacyjnej współpracy mgr Anny Pas z Biura ZG PTMA. Uczestnicy zamieszkiwali na koszt PTMA w ośrodku campingowym PKP. Zajęcia odbywały się na terenie stacji obserwacyjnej. Na wyposażenie instrumentów składały się instrumenty Towarzystwa oraz Liceum Ogólnokształcącego w Niepołomicach. Uczestnicy mieli do dyspozycji: Zeiss D o średnicy obiektywu \(\Phi = 11 \) cm i ogniskowej \(f = 220 \) cm, Zeiss M \(\Phi = 8 \) cm i \(f = 8 \) cm, astrograf \(\Phi = 12 \) cm i \(f = 80 \) cm, 3 teleskopy szkolne typu Maksutowa, 4 lunetki jeleniogórskie oraz reflektor \(\Phi = 15 \) cm i \(f = 160 \) cm. Niestety tylko Zeiss D i małe teleskopy Maksutowa były sprawne. Pozostałe instrumenty miały liczne uszkodzenia i braki uniemożliwiające wykorzystanie ich. Tylko wytrwałość i entuzjazm uczestników umożliwiły prowizoryczne uruchomienie i wykorzystanie tych instrumentów. Konieczne były liczne naprawy, konserwacje i adaptacje. W tym miejscu pragnę podziękować panom Andrzejowi Wicikiemu i Zdzisławowi Słowikowi, miejscowym załężonym działaczom PTMA za bezinteresowną pomoc przy wykonywaniu powyższych prac.
Celem turnusu była praktyczna nauka obserwacji dostępnych dla amatorów. Głównym tematem naszych zainteresowań były gwiazdy zmienne zaćmieniowe. Prowadzone były również zajęcia z zakresu obserwacji meteorów i Słońca. W trakcie turnusu uczestnicy nabycy też praktycznej umiejętności orientacji na niebie, wyszukiwania słabych obiektów, korzystania z mapy obrotowej i atlasów nieba oraz posługiwania się instrumentem.

Z końcem turnusu odwiedził nas Prezes ZG PTMA M. Mazur. W sposób bardzo interesujący i sugestywny zachęcił młodzież do kontynuowania obserwacji. Uczestnicy podzieliły się z Prezesem uwagami o tego rodzaju imprezach. Przekonali się oni o możliwości nabycia praktycznych umiejętności prowadzenia obserwacji amatorskich o pełnej wartości naukowej. Wyniki są obecnie opracowywane i zostaną opublikowane w The Astronomical Reports.

LECH BARSKI

Kurs szkoleniowo-obserwacyjny Wrocław 1978 r.

W dniach od 5 do 15 sierpnia 1978 r. we Wrocławiu odbył się kurs „ABC Astronomii” zorganizowany przez Zarząd Główny PTMA przy pomocy Zarządu Oddziału PTMA we Wrocławiu oraz Obserwatorium Astronomicznego Uniwersytetu im. Bolesława Bieruta. Turnus liczył siedemnastu uczestników z Polski oraz pięcioosobową grupę z Słowacji. Słowacy przebywali we Wrocławiu od 1 do 12 sierpnia w ramach wymiany grup miłośników pomiędzy PTMA a SÚAA (Slovenska Ústredna Amaterskej Astronomie).

Wszyscy uczestnicy otrzymali zakwaterowanie w hotelu „Olimpia”, gdzie warunki do wypoczynku i pobytu były doskonałe. Zgodnie z tradycją miłośnicy zamieszkiwali w hotelu na koszt ZG PTMA, a wyżywienie każdy z uczestników organizował sobie indywidualnie.
Zajęcia teoretyczne i obserwacyjne odbywały się w doskonale przygotowanych do tego celu pomieszczeniach wrocławskiego Oddziału PTMA na Wzgórzu Partyzantów. Tak wspaniałe warunki do prowadzenia zajęć zdarzają się dość rzadko podczas kursów szkoleniowo-obserwacyjnych i dlatego członkom Zarządu Oddziału wrocławskiego należą się za to szczególne słowa podziękowania.

Kierownikiem turnusu był Krzysztof Włodarczyk, który prowadził główny cykl wykładów odbywających się dwa razy dziennie w godzinach 11.00 i 17.00. Główny cykl wykładów częściowo pokrywał się z podręcznikiem akademickim prof. E. Rybki pt. „Astronomia ogólna”. Poza tym odbywały się wykłady dodatkowe, które prowadzili członkowie Zarządu Oddziału PTMA we Wrocławiu oraz pracownicy naukowi Obserwatorium Astronomicznego. W porządku chronologicznym wykłady dodatkowe prowadzili: dr Przemysław Rybka (elementy astronomii sferycznej, katalogi fundamentalne), inż. Aleksander Szafkowski (elementy teorii względności Einsteina), mgr Wiktor Musiał (tematyka astrologiczna), dr Tadeusz Kozar (gwiazdy zmienne wielookresowe) oraz prof. Roman Janiczek (skala odległości we wszechświecie oraz ważniejsze zjawiska astronomiczne do końca XX w.). W nawiasach podałem przybliżoną problematykę wykładów.

Poza zajęciami teoretycznymi uczestnicy mieli możliwość zwiedzania Obserwatorium Astronomicznego we Wrocławiu oraz filii tego Obserwatorium w Białkowie k/Zmigrodu. Po budynkach Obserwatorium przy ul. Kopernika uczestników obozu oprowadzali: dr P. Rybka oraz dr T. Kozar, który był również przewodnikiem w Białkowie.

Wszystkie zajęcia odbywały się zgodnie z planem, co dobrze świadczy o organizacji zajęć turnusu. Szkoda tylko, że odbyło się tak mało zajęć obserwacyjnych, gdyż pogoda znowu nie dopisała. W czasie gdy odbywały się zajęcia kursu, nad Dolnym Śląskiem przechodziły huraganowe, silne opady.

Wykłady oraz jedno zorganizowane seminarium cieszyły się dużym powodzeniem, o czym świadczy fakt uczestnictwa kilkunastu osób grupy miłośników astronomii z Wrocławia. W sumie każdy z uczestników mógł wzbogacić swoją wiedzę o Wszechświecie, czyli główny cel tego typu kursów został zrealizowany.

W kursie uczestniczyli: Waldemar Filipowicz (Krynica), Dariusz Hyla (Strzegom), Ilona Kotarska (Ruda Śl.), Tadeusz Sierotowicz (Nowy Sącz), Andrzej Sobieraj (Dębica), Adam Rytko (Świnoujście), Marek Wojciechowski (Muszyna) oraz delegacje miłośników astronomii ze Słowacji w składzie: Mikulas Macanski z żoną, Jana Beresova, Valika Fricova, Cyril Burda.

KALENDARZYK ASTRONOMICZNY

Opracował G. Sitarski

Słońce

W maju Słońce wstępuje w znak Bliźniaty. Dnia ciągle jeszcze przybywa; oto momenty wschodów i zachodów Słońca w Warszawie: 1 maja Słońce wschodzi 4h7m, zachodzi o 19h1m, a 31 maja wschodzi o 3h22m, zachodzi o 19h46m.
Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>(B_0)</th>
<th>(L_0)</th>
<th>Data 1979</th>
<th>P</th>
<th>(B_0)</th>
<th>(L_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 1 1979</td>
<td>-24°19'</td>
<td>-4°14'</td>
<td>294°48'</td>
<td>V 17 1979</td>
<td>-20°47'</td>
<td>-2°41'</td>
<td>82°92'</td>
</tr>
<tr>
<td>3</td>
<td>-23.82</td>
<td>-3.94</td>
<td>268.05</td>
<td>19</td>
<td>-19.88</td>
<td>-2.18</td>
<td>56.48</td>
</tr>
<tr>
<td>5</td>
<td>-23.43</td>
<td>-3.74</td>
<td>241.61</td>
<td>21</td>
<td>-19.28</td>
<td>-1.95</td>
<td>30.02</td>
</tr>
<tr>
<td>7</td>
<td>-23.00</td>
<td>-3.52</td>
<td>215.17</td>
<td>23</td>
<td>-18.64</td>
<td>-1.71</td>
<td>3.56</td>
</tr>
<tr>
<td>9</td>
<td>-22.55</td>
<td>-3.30</td>
<td>188.72</td>
<td>25</td>
<td>-17.98</td>
<td>-1.48</td>
<td>337.10</td>
</tr>
<tr>
<td>11</td>
<td>-22.07</td>
<td>-3.08</td>
<td>162.28</td>
<td>27</td>
<td>-17.30</td>
<td>-1.24</td>
<td>310.64</td>
</tr>
<tr>
<td>13</td>
<td>-21.56</td>
<td>-2.86</td>
<td>135.83</td>
<td>29</td>
<td>-16.59</td>
<td>-1.00</td>
<td>284.17</td>
</tr>
<tr>
<td>15</td>
<td>-21.03</td>
<td>-2.64</td>
<td>109.38</td>
<td>31</td>
<td>-15.86</td>
<td>-0.76</td>
<td>257.70</td>
</tr>
</tbody>
</table>

\(B_0, L_0\) — heliograficzna długość i szerokość środka tarczy.
P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy.

Księżyc

Bezksiężycowe noce będziemy mieli w ostatniej dekadzie miesiąca, bowiem kolejność faz Księżyca jest w maju następująca: pierwsza kwadrata 4\(^{d}5\)\(^{h}\), pełnia 12\(^{d}3\)\(^{h}\), ostatnia kwadrata 19\(^{d}1\)\(^{h}\), nowa 26\(^{d}3\)\(^{h}\). Najdalej od Ziemi znajdzie się Księżyc 4 maja przed północą, a najbliżej Ziemi 18 maja przed południem.

Planety i planetoidy

Rankiem, nisko nad wschodem horyzontem ciągle jest jeszcze widoczna Wenus jako jasna gwiazda —3.3 wielkości. Na godzinę przed Słońcem wschodzi też Mars, ale trudno go odnaleźć nisko nad wschodem horyzontem jako słabą czerwoną gwiazdkę +1.5 wielkości. Jowisz jest w pierwszej połowie nocy jako gwiazda —1.5 wielkości w gwiazdozbiorze Raka; przez lunety możemy obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyków Jowisza. Saturn zachodzi godzinę później niż Jowisz i widoczny jest w gwiazdozbiorze Wody jako gwiazda —0.9 wielkości. Uran jest widoczny przez całą noc w gwiazdozbiorze Wagi (6 wielk. gwiazd.), a Neptune prawie całą noc nisko nad horyzontem w gwiazdozbiorze Węzownika wśród gwiazd 8 wielkości. Pluton przebywa na granicy gwiazdozbiorów Panny, Wolarza i Warkocza Bereniki, ale dostępny jest tylko przez wielkie teleskopy jako słaba gwiazdka około 14 wielkości.

Meteory

Od 1 do 8 maja (maksimum przypadła 5 maja) promieniują eta Akwaridy. Radiant meteorów leży na równiku niebieskim w gwiazdozbiorze Wodnika (rekt. 22\(^{h}24\)\(^{m}\)). W tym roku warunki obserwacji są dobre.
i powinniśmy zaobserwować spadek nawet kilkunastu meteorów w ciągu godziny. Ród ten jest prawdopodobnie związany z orbitą komety Halleya.

* * *

1d O 20h25m obserwujemy koniec zaćmienia 3 księżyca Jowisza; księżyca ten ukryty dotąd w cieniu planety pojawi się nagle z prawej strony tarczy (patrząc przez lunetę odwracającą). O 20h53m obserwujemy początek przejścia 4 księżyca na tle tarczy planety.

3d Złączenie Księżyca z Jowiszem w odległości 4°.

4d O 21h29m obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety.

5d O 9h złączenie Merkurego z Marsem w odległości 2°. Wieczorem księżyca 1 i jego cień przechodzą na tle tarczy Jowisza; obserwujemy koniec przejścia: księżyca 1 o 20h55m, a cienia o 22h9m.

6d Złączenie Saturna z Księżyce w odl. 3°.

7d Wieczorem księżyca 2 Jowisza zbliża się do brzegu tarczy planety; o 21h38m nastąpi początek jego zakrycia.

8d Wieczorem księżyca 3 święci w pobliżu brzegu tarczy Jowisza i oddala się od niej, by o 20h46m zniknąć nagle w cieniu planety (początek zaćmienia).

9d Na tarczy Jowisza do 22h6m widoczny jest cień jego 2 księżyca (sam księżyca 2 skończył przejście na tle tarczy o 19h38m).

10d O 5h Saturn nieruchomy w rektascencji. O 8h Uran w przeciwstawieniu ze Słońcem względem Ziemi.

11d Złączenie Urana z Księżyce w odl. 4°.

12d Księżyca 1 Jowisza przechodzi na tle tarczy planety. Obserwujemy początek przejścia: księżyca o 20h36m, jego cienia o 21h47m.

13d O 21h20m obserwujemy koniec zaćmienia 1 księżyca Jowisza.

14d Złączenie Neptuna z Księżyce w odl. 4°.

15d O 19h56m księżyca 3 Jowisza ukryty jest za tarczą planety.

16d O 19h30m księżyca 2 Jowisza przechodzi na tle tarczy planety, a od 21h52m widoczny jest na niej cień tego księżyca.

20d O 7h złączenie Wenus z Marsem w odl. 1°; rankiem obserwujemy obie planety blisko siebie nisko nad wschodnim horyzontem. Od 19h56m księżyca 1 ukryty jest za tarczą Jowisza.

21d O 16h40m Słońce wstępuje w znak Bliźniat, jego długość ekliptyczna wynosi 60°.

23d Księżyca znajduje się w złączeniu kolejno z dwiema planetami: o 20h z Marsem, a o 23h z Wenus.

25d Wieczorem księżyca 2 przechodzi za tarczą i przez strefę cienia Jowisza; o 21h30m nastąpi koniec zaćmienia tego księżyca.

26d Wieczorem na tle tarczy Jowisza widoczny jest cień jego 3 księżyca, a księżyca 4 ukryty jest za tarczą planety (od 19h40m).

27d O 21h53m obserwujemy początek zakrycia 1 księżyca Jowisza przez tarczę planety.

28d Księżyca 1 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy koniec przejścia: księżyca 1 o 21h18m, cienia o 22h23m.

29d O 24h30m Góorne złączenie Merkurego ze Słońcem.

30d23h Jowisz w złączeniu z Księżyce w odległości 4°.

Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim.
CONTENTS

M. Heller — Up-to-date problems of cosmology.

T. Z. Dworak and Z. Paprotny — The Moon’s origin and its place in development of the terrestrial life and science.

Z. Rzepka — Programs of astronomical calculations for a small computer.

Chronicle: „Copies” of the Sun within 25 ps (and not only) from it — Are quasars nuclei of elliptical galaxies? — The Sun’s ecosphere, a „greenhouse” effect and the Drake’s formula — Chances of discovery of a signal from an extraterrestrial intellect — Changes of the Neptun’s brightness — Rotation of Uran and Neptun.

Observations: Observations of the West’s comet during the year 1976 (J. Speil).

PTMA Chronicle.
Astronomical Calendar.
Cena zł 8.—
SPIS TREŚCI

Stanisław R. Brzostkiewicz — Układ Plutona i jego zagadki.

Michał Heller — Pierwsze trzy minuty kosmicznej ewolucji.

Marek Zawilski — Brzegowe zakrycia gwiazd przez Księżyc w Polsce w 1979 r.

Andrzej Piński — Wakacje w planetarium.

Obserwacje: Komunikat CSOS nr 12/78 — Raport XII 1978 o radio-wym promieniowaniu Słońca.

Kronika PTMA: Jubileusz K. Kordylewskiego.

Artykuł „Trzy pierwsze minuty kosmicznej ewolucji” jest w pewnym sensie recenzją książki, która ukazała się na Zachodzie i stała się wkrótce światowym bestsellerem.

Milośników — obserwatorów zachęcamy do zapoznania się z artykułem M. Zawilskiego na temat tzw. brzegowych zakryć gwiazd przez Księżyc. Jest to jedna z dziedzin, w której miłośnicy odegrać mogą większą rolę.

Tych Czytelników, do których poprzedni numer „Urania” dotarł po 1 kwietnia, gorąco przepraszamy za zwód: artykuł pt. „Pochodzenie i rola Księżyca” czytany po tej dacie nie mógł sprawić właściwego efektu.

Kronika historyczna: Jan Baranowski — Ludwik A. Birkenmajer.

Nowości wydawnicze.

Kalendarzyk astronomiczny.

Pierwsza strona okładki. Zdjęcie planety Saturn wykonane za pomocą 100 calowego teleskopu na Mount Wilson (Kalifornia, USA).

Trzecia strona okładki: Sondy kosmiczne Pioneer Venus Orbiter w hali montażowej zakładów Hughes Aircraft w El Segundo (Kalifornia, USA). Sondy osiągnęły Wenus w grudniu ub. roku, a cztery próbniki, które się od nich odłączyły, osiadły na powierzchni planety.
UKŁAD PLUTONA I JEGO ZAGADKI

Czy jednak odkrycie Plutona to kolejny tryumf mechaniki nieba? Takiej pewności nie ma i dlatego zdania astronomów są na ten temat od początku podzielone. Jedni uważają, iż Lowell faktycznie powtórzył matematyczny wyczyn Urbana Leverrieria (1811—1877) i Johna Adamsa (1819—1892), którzy na podstawieperturbacji ruchu Urana obliczyli elementy nieznanego w owym czasie Neptuna, wyznaczycy jego przybliżoną masę i wskazali zajmowaną przez niego aktualnie pozycję na niebie. Inni natomiast są dla odmiany przekonani, że odkrycie Plutona przez Tombaugha to tylko szczęśliwy zbieg okoliczności. Ta druga ewentualność wydaje się być bliższa prawdy, gdyż w tamtych czasach dysponowano zbyt skąpymi danymi o ruchach Urana i Neptuna, aby na ich podstawie obliczyć poprawne elementy orbity hipotetycznej planety transneptunowej. Świadczy o tym także rzeczywista masa Plutona, która okazała się dużo mniejsza od masy wyliczonej przez Lowella. Ale ponieważ to on zainicjował poszukiwania, słusznie chyba oświadczenie o odkryciu nieznanej planety ogłoszono dopiero w rocznicę jego urodzin (13 marca 1930 r.), podkreślając w ten sposób wniesione przez niego zasługi. Ponadto na wniosek Vesto M. Sliphera (1875—1969) nowoodkryte ciało nazwano Plutonem, gdyż dwie pierwsze litery tej nazwy są inicjałami Lowella, a jednocześnie jest to łacińskie nazwisko greckiego boga podziemi Hadesa (Rzymianie identyfikowali go z Plutonem). Nazwa ta bardzo więc pasuje do planety krążącej na krańcach Układu Słonecznego i otrzymującej od Słońca około 1600 razy mniej światła niż Ziemia.
Pluton — najdalsza ze znanych planet naszego układu planetarnego — obiega Słońce w średniej odległości 5900 mln km (39,44 j. a.). Ponieważ jednak porusza się po bardzo wydłużonej orbicie (jej mimośród wynosi 0,253), odległość ta w aphe- lium wzrasta do 7375 mln km (49,29 j. a.), a w perihelium znowu maleje do 4425 mln km (29,57 j. a.). Wynika z tego, że Pluton nie zawsze jest najdalszą znaną planetą Układu Słonecznego, gdyż niekiedy porusza się wewnątrz orbity Neptune (taka sytuacja występuje właśnie obecnie). Jeżeli zaś obie planety nie zbliżają się do siebie na niebezpieczną odległość, to jedynie dlatego, iż płaszczyzna plutonowej orbity jest silnie nachylona do płaszczyzny orbit innych planet (z płaszczyzną ekliptyki tworzy kąt przeszło 17°). Biorąc to pod uwagę astronom japoński Issei Yamamoto (1889—1959) i astronom angielski Raymond A. Lyttleton wysunęli w latach 1935—1936 hipotezę, że Pluton jest byłym księżyce Neptune. Miał się oderwać od niego po przejściu nieznanej gwiazdy przez peryferie Układu Słonecznego.

Na skutek dużej odległości Pluton w największych nawet teleskopach ma postać prawie że świetlnego punktu. Nic zatem dziwnego, że jego fizyczne parametry są tak trudne do ustalenia dla naziemnej astronomii. Do niedawna astronomowie nie znali nawet przybliżonej średnicy Plutona i w miejsce tej wartości długo w tabelach podawano znak zapytania. Po raz pierwszy rozmiary najdalszej znanej planety Układu Słonecznego usiłowali wyznaczyć Gerard P. Kuiper (1905—1973) dopiero przed kilkunastu laty. W roku 1950 zmierzył tarczę Plutona na zdjęciu wykonanym pięciometrowym teleskopem na Mt Palomar, otrzymując wartość 0,23 sekundy łuku, co po uwzględnieniu odległości dawało na średnicę planety około 5900 km. Wynik ten zaskoczył astronomów, ponieważ wszyscy raczej oczekiwali, że Pluton będzie miał dużo większy glob. Według bowiem ówczesnych obliczeń jego masa miała być równa masie Ziemi, a zatem musiałaby mieć potwornie dużą gęstość, wynoszącą aż około 50 g/cm³. To zaś wydawało się mało prawdopodobne i dlatego przyjmowano, iż Pluton ma bardzo gładką powierzchnię, odbijającą promienie słoneczne tak jak wypukłe zwierciadło. Występuje więc pozorne zmniejszenie jego średnicy, gdyż nie obserwujemy całej tarczy planety, lecz jedynie najjaśniejszą jej część śródokową.

W miarę upływu czasu i wzrostu dokładności pomiarów na masę Plutona przyjmowano coraz mniejszą wartość, a ostatnio nawet już tylko 1/5,6 masy Ziemi. Ale i tak na jego średnią
gęstość wypada 6,73 g/cm³, co nie dawało spokoju planetologom. Dziś mogą oni już spać spokojnie, bo Pluton nie ma ani dużych rozmiarów, ani zbyt wielkiej masy, ani też nie jest zbudowany z nadzwyczaj gęstej substancji. Dowiedzieliśmy się o tym dzięki odkryciu, którego w roku 1978 dokonał astronom amerykański James W. Christy. Stwierdził on można wiec, przeglądając powiększone zdjęcia Plutona otrzymane półtorametrowym teleskopem we Flagstaff, że tarcza planety jest na nich jakby „wyciągnięta” mniej więcej w kierunku północ-południe, chociaż obrazy gwiazd na tychże kliszach mają dokładnie kolistne kształty. Jako jedyne możliwe wyjaśnienie tego efektu należało przyjąć, że Plutona w niewielkiej odległości obiega względnie duży księżyc.

Na podstawie analizy zdjęć stwierdzono, że Charon oddala się od Plutona na maksymalną odległość około 0,9 sekundy łuku w kącie pozycyjnym 170 i 350°. Porusza się niemal po kolistej orbicie o promieniu około 20 000 km, nachylonej względem płaszczyzny ekliptyki pod kątem około 60°. Pełnego obiegu dokoła Plutona dokonuje w ciągu 6 dni 9 godzin i 17 minut, czyli zgodnie z przyjmowanym obecnie okresem jego rotacji. Należało zatem przyjmować, że Charon porusza się
po zsynchronizowanej orbicie, co mogłoby być wywołane długotrwałymi oddziaływaniomipłynowymi. Są jednak wątpliwości, czy taka korelacja faktycznie zachodzi w układzie Plutona. Wiadomo bowiem, że okres jego rotacji był wyznaczony jedynie na podstawie zmian jasności w granicach 10 do 20 procent w okresie 6 dni 9 godzin i 17 minut. Może więc pla-

![Diagram](attachment:diagram.png)

Rys. 1. Pozorna droga Charona dokoła Plutona w okresie od 8 do 15 czerwca 1978 roku (strzałką oznaczono kierunek księżyca, a literą a — wielką półoś jego orbity).

neta wiruje w zupełnie innym okresie, a obserwowane zmiany jej jasności wywołuje obiegający ją księżyc? W tym czasie, gdy dla ziemskiego obserwatora jest on zakryty, jasność układu jest najmniejsza. Największa zaś, gdy Charon znajduje się na niebie obok Plutona. Wtedy ich blask może się kumulować i dla ziemskiego obserwatora wzrasta jasność układu. W danym przypadku zachodziłoby zjawisko podobne do zjawisk występujących w układach gwiazd zmiennych zakryciowych.

Na podstawie orbity Charona można było nareszcie w „przyzwoity” sposób ocenić masę Plutona. Wynosi ona 1.4×10^{25} g, co odpowiada 1/420 masy Ziemi lub 1/5 masy Księżyca. Jest więc stanowczo za mała na to, by wywoływać obserwowane perturbacje w ruchach Uran i Neptuna. To zaś przemawia na rzecz poglądu, że Tombaugh odkrył Plutonu zupełnie przypadkowo, a nie na podstawie efemerydy Lowella. Jak jednak wytłumaczyć różnice między obliczonymi a obser-
wowanymi położeniami Urana i Neptuna na niebie? Czy wywołuje je hipotetyczna planeta transplutonowa, czy też raczej jest to zupełnie przypadkowa zgodność błędów obserwacyjnych? Niestety, oba pytania muszą na razie pozostać bez odpowiedzi. Możemy natomiast już stwierdzić, że wnioski wy- sunięte niedawno przez Dale P. Cruikshanka, Davida Morrisona i Carla B. Pilchera są całkowicie poprawne. W roku 1976 zmierzyli oni czterometrowym teleskopem na Kitt Peak pod- czerwone promieniowanie Plutona i na podstawie otrzymanych wyników wystąpili z tezą, iż jego powierzchnia pokryta jest zamarzniętym metanem. A zatem planeta dużo lepiej odbija światło słoneczne niż dotychczas przyjmowano. Gdyby zaś na albedo Plutona przyjąć wartość 0,6 to wyliczona jego średnica miałaby zaledwie 2800 km. Byłyby więc on dużo mniejszy od naszego Księżyca, co początkowo wydawało się mało prawdopodobne. Dziś natomiast wartość ta jest nie tylko możliwa do przyjęcia, lecz nawet konieczna. Wyliczona bowiem na jej podstawie średnia gęstość Plutona wynosiłaby jedynie 1,3 g/cm³, czyli byłaby porównywalna ze średnimi gęstościami Urana i Neptuna. Tak więc pod względem gęstości Pluton byłby zbliżony do planet grupy jowiszowej, chociaż rozmiarami przypomina raczej planety ziemskiego typu.

Na razie odżyła stara, swego czasu krytykowana hipoteza Yamamoty i Lyttletona. Masywny bowiem Pluton, zbudowany z supergęstej substancji, nie bardzo pasował na byłego księ- życa Neptuna. Tymczasem jego fizyczne parametry, wyznaczone na podstawie ruchu nowoodkrytego Charona, stanowią poważny argument na rzecz tego poglądu. Pluton okazał się przecież podobny do satelitów planet grupy jowiszowej i śmia-
ło mógł być w przeszłości księżykiem Neptuna. A przestał nim być — jak zakładają Yamamoto i Lyttleton — na skutek zderzenia z Trytonem, co miało nastąpić pod wpływem przeходzącej w pobliżu Układu Słonecznego obcej gwiazdy. Od tego czasu Tryton okrąża Neptuna ruchem wstecznym, natomiast Pluton porusza się po samodzielnej, silnie wyciągniętej orbicie okołosłonecznej. Lecz może bliższy prawdy są amerykańscy astronomowie Robert S. Harrington i Thomas Van Flandern, którzy powyższą katastrofę kosmiczną tłumaczą oddziaływaniem grawitacyjnym dziesiątej planety? Ta hipotetyczna planeta, posiadająca 3 lub 4 razy większą masę od Ziemi, miała w początkowym okresie istnienia Układu Słonecznego krążyć niedaleko orbity Neptuna. Pewnego jednak razu zbliżyła się do niego na niebezpieczną odległość i przerzuciła Trytona na wsteczny tor, a Plutona w ogóle wyrywała z orbity okołoneptunowej i wrzuciła go na samodzielną orbitę okołosłoneczną. Jednocześnie jej siły pływowe oderwały od niego spory fragment materii, z której wytworzył się właśnie nowo odkryty Charon. Po tym wydarzeniu dziesiąta planeta zaczęła poruszać się po nowej orbicie, okrążając Słońce gdzieś w odległości od 7480 do 11 960 mln km (od 50 do 100 j. a.). To jest głównym powodem, że ją tak trudno dostrzec na niebie.

Niestety, do hipotezy Harringtona i Van Flanderna także należy odnosić się z dużą rezerwą. Dziesiąta planeta do dziś jest jedynie tworem hipotetycznym, a istnienie Charona też nie zostało dotąd definitwnie stwierdzone, chociaż zaobserwowaną „narośl” na tarczy Plutona trudno tłumaczyć jego ogórkowatym kształtem, bo musiałby mieć długość co najmniej 6 razy większą od średnicy. Tak więc parametry fizyczne najdalszej znanej planety Układu Słonecznego są ciągle niepewne i dlatego będzie ona nadal w centrum uwagi astronomów. Warunki zaś do jej obserwacji są obecnie sprzyjające, gdyż w końcu 1978 roku była oddalona od Słońca o 4531 mln km (30,29 j. a.), a od naszego globu „zaledwie” o 4454 mln km (30,44 j. a.). A zatem znajdowała się bliżej nas niż Neptun, którego w tym czasie dzieliło od Ziemi aż 4671 mln km (31,22 j. a.). W nadchodzących latach warunki do obserwacji Plutona będą jeszcze lepsze, zbliża się on bowiem do perhythelium swej orbity i ma go osiągnąć 30 września 1989 roku. Jest więc nadzieja, że w najbliższych latach zostanie rozwiązana niejedna z przedstawionych w tym artykule zagadek.
PIERWSZE TRZY MINUTY KOSMICZNEJ EWOLUCJI

Steven Weinberg jest profesorem fizyki na Uniwersytecie Harvardzkim. Pracuje twórczo w dziedzinie fizyki relatywistycznej i fizyki wysokich energii. Z jego podręcznika „Gra­witacja i Kosmologia: zasady i zastosowania ogólnej teorii

A reportaż dotyczy niecodziennej podróży. Jest to podróż wstecz w czasie aż do najwcześniejszych etapów kosmicznej ewolucji. Biletem upoważniającym do tej podróży jest nasza obecna znajomość praw fizyki i obserwacje astronomiczne. Podróż odbywa się następującą metodą: musimy tak dobrać „warunki początkowe”, ażeby znane prawa fizyki wyprowadziły z nich to, co dziś obserwujemy. Jeżeli nam się to udaje, to twierdzimy, że takie „warunki początkowe” rzeczywiście istniały „na początku” i że Wszechświat istotnie ewoluował zgodnie z naszą rekonstrukcją.

Ale nasuwa się niepokojące pytanie: czy taka metoda jest jednoznaczna? Czy przypadkiem nie jest tak, że istnieje wiele rozmaitych „warunków początkowych”, z których — przy pomocy znanych praw fizyki — możemy wyprowadzić obraz Wszechświata? Istotnie, tak by w zasadzie mogło być, ale i tym razem okazuje się, że przyroda jest dziwnie łaskawa dla ziemskiego badacza. Informacje niesione przez promieniowanie tła w połączeniu ze znajomością kinetyki kosmicznej ekspansji (a o niej możemy się dowiedzieć z równań Einsteina) pozwalają wywnioskować, że we wczesnych fazach swojej ewolucji świat znajdował się w stanie równowagi termodynamicznej. Ewolucja układu znajdującego się w równowadze termodynamicznej jest całkowicie określona przez jego temperaturę oraz przez kilka wielkości podlegających prawom zachowania. Znajomość koniecznych parametrów dostarczają aktualne pomiary promieniowania tła oraz oszacowania obecnej średniej gęstości materii we Wszechświecie. Korzystając z tych informacji, potrafimy, przy pomocy współczesnej fizyki teoretycznej, zrekonstruować historię Wszechświata wstecz aż do okresu (włącznie), kiedy znajdował się on w równowadze termodynamicznej. „W ten sposób Wszechświat pamięta o swoich wąskich początkach jedynie w bardzo ograniczonym zakresie. Jest to przykro okoliczność, jeśli chcemy cofnąć się do samego początku, ale za to możemy odtworzyć bieg późniejszych zdarzeń bez zbyt wielu dowolnych założeń”. (s. 56) O skuteczności tej metody niech świadczy fakt, że pozwala ona wiarygodnie zrekonstruować ewolucję Wszechświata aż do chwili
odległej o... jedną setną sekundy od jej początku. Na prze­
szkodzie dalszej rekonstrukcji stoi nasza ograniczona znajo­
mość fizyki bardzo wysokich energii. Korzystając z prawdopo­
dobnych, ale niesprawdzonych hipotez, możemy rekonstrukcję
fizyki świata cofnąć do chwili odległej o 10^{-44} sekundy od po­
czątku. Ale tu już napotykamy prawdziwą niemożność: w tak
skrajnych warunkach grawitacja musi ukazywać swoje kwant­
towe oblicze, a — jak dotychczas — nie posiadamy kwantowej
teorii grawitacji.

O tym wszystkim opowiada w pasjonujący sposób książka
Weinberga. Całosi dopelnia słowniczek „wyrazów technicz­
nych” oraz dodatek matematyczny, zawierający coś w rodzaju
bardzo skondensowanego (do ok. 10-ciu stron) wykładu kos­
mologii w postaci komentarza do elementarnych formuł kos­
mologicznych.

Ostatnie zdanie książki brzmi: „Wysiłek zrozumienia
Wszechświata jest jedną z niewielu rzeczy, które podnoszą
życie ludzkie niewiele ponad poziom farsy, obdarzając je
wzniosłością tragedii”. To zdanie wybitnego uczonego jest
jeszcze jednym dowodem tego, że pragnienia człowieka prze­
rastają Wszechświat.

MAREK ZAWILSKI — Łódź

BRZEGOWE ZAKRYCIA GWIAZD PRZEZ KSIĘŻYC
W POLSCE W 1979 R.

Wzorem ubiegłego roku podajemy informacje, dotyczące wi­
doczności w naszym kraju brzegowych zakryć gwiazd przez
księżyc.

Dane te opracowano na podstawie obliczeń, wykonanych
w „Astronomischer Arbeitskreis” w Hanowerze (RFN) pod
kierunkiem H. Bode’ego. Na skutek późnego otrzymania tych
matериалów zmuszeni jesteśmy do podania efemeryd zakryć
brzegowych dopiero obecnie.

Na rys. 1 przedstawiono przebieg granic zakryć na terenie
Polski. Strażakami oznaczono obszar widoczności zakrycia.
Uzupełniające dane przedstawione w tab. 1. Efemerydy podano
dla zakryć gwiazd jaśniejszych od $7^m,0$ (oryginalne obliczenia
przeprowadzono dla gwiazd $7^m,7$). Pominięto także (z wyjąt-
Tab. 1. Dane uzupełniające do efemeryd zakryć brzegowych w Polsce w 1979 r.

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Data</th>
<th>Gwiazda</th>
<th>Jasność</th>
<th>Moment przybliż. U.T.</th>
<th>Kąty pozycyjne</th>
<th>H_k</th>
<th>H_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IV 1</td>
<td>α Tau</td>
<td>1, m1</td>
<td>16, h1</td>
<td>352° 355°</td>
<td>+50°</td>
<td>+10°</td>
</tr>
<tr>
<td>2.</td>
<td>V 2</td>
<td>1 Cnc</td>
<td>6, 0</td>
<td>22, 4</td>
<td>192 192</td>
<td>+8</td>
<td>−21</td>
</tr>
<tr>
<td>3.</td>
<td>VIII 17</td>
<td>117 Tau</td>
<td>6, 0</td>
<td>3, 1</td>
<td>170 174</td>
<td>+38</td>
<td>−4</td>
</tr>
<tr>
<td>4.</td>
<td>VIII 18</td>
<td>292- B Ori</td>
<td>6, 5</td>
<td>3, 7</td>
<td>175 178</td>
<td>+35</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>IX 18</td>
<td>15 B Leo</td>
<td>6, 9</td>
<td>3, 9</td>
<td>191 195</td>
<td>+24</td>
<td>−5</td>
</tr>
<tr>
<td>6.</td>
<td>X 14</td>
<td>ZC 1258</td>
<td>5, 7</td>
<td>1, 6</td>
<td>6 13</td>
<td>+32</td>
<td>−32</td>
</tr>
<tr>
<td>7.</td>
<td>XI 6</td>
<td>α Tau</td>
<td>1, 1</td>
<td>7, 0</td>
<td>356 3</td>
<td>+7</td>
<td>+8</td>
</tr>
<tr>
<td>8.</td>
<td>XII 23</td>
<td>27 Psc</td>
<td>5, 1</td>
<td>20, 7</td>
<td>158 157</td>
<td>+13</td>
<td>−55</td>
</tr>
</tbody>
</table>

A_p — kąt pozycyjny „styku” gwiazdy z brzegiem tarczy Księżyca, T — kąt pozycyjny terminatora Księżyca, H_k — wysokość Księżyca nad horyzontem, H_s — wysokość Słońca nad horyzontem. Wartości powyższe podano w przybliżeniu.

Rys. 1. Przebieg granic brzegowych zakryć gwiazd przez Księżyc w 1979 r. na terenie Polski.
kiem Aldebarana) zakrycia dzienne. Niektóre informacje n.t.
obserwacji zakryć brzegowych były zamieszczone w „Uranii”
w roku ubiegłym (n-ry 7/78 i 9/78).

ANDRZEJ PILSKI — Frombork

WAKACJE W PLANETARIUM

W kwietniu ubiegłego roku, w „Przekroju”, ukazała się notatka
apelująca do miłośników astronomii, aby pomogli fromborskiemu planetarium. „Główną formą działania planetariu —
pisali jego pracownicy — są obecnie seanse astronomiczne,
czyli pokazy sztucznego nieba. Chcielibyśmy uzupełnić je po-
każami nieba prawdziwego. (...) Obsługa planetarium jest jed-
nak zbyt szczupła aby to zamierzenie zrealizować. Dlatego też
poszukujemy ludzi, którzy na tyle polubili astronomię, że ze-
chcą poświęcić część urlopu na pokazywanie innym ciał nie-
bieskich...”.

Na apel odpowiedziało kilkanaście osób, głównie młodzież —
uczniowie szkół średnich i studenci. Niestety nie odpowiedziała
na apel pogoda. Każdego pogodnego dnia można jednak było
zobaczyć na dziedzińcu Warowni Fromborskiej długie kolejki
do teleskopów. Na tym samym dziedzińcu, z którego niegdyś
obserwował niebo Kopernik.

Pokazy odbywały się prawie wyłącznie w dzień, gdyż wtedy
było na dziedzińcu najwięcej turystów. Ogładowano głównie pla-
my słoneczne, oraz Wenus i czasem Księżyca. W wielu przy-
padkach treść seansów w planetarium była ścisłe związana
z pokazami. Plamy słoneczne obserwowano na ekranie tele-
skopu o ogniskowej 1 m i średnicy obiektywu 10 cm, lub bez-
pośrednio z użyciem filtrów teleskopem o ogniskowej 220 cm
i średnic yzwierciadła 15 cm. Ten drugi teleskop był używany
tez do oglądania Wenus. Nasi goście z podziwu godną cierpli-
wością i zapałem tłumaczyli, co widać, odpowiadali na wiele
pytań i bronili teleskopu przed uszkodzeniem (większość oglą-
dających pierwszy raz w życiu miało do czynienia z tele-
skopem).

Podczas niepogody demonstrowano wahadło Foucaulta za-
wieszono w wieży Radziejowskiego. Wielkim zainteresowaniem
naszych gości cieszyło się samo planetarium, zwłaszcza, że nie-
oczekiwane został przyspieszony termin wymiany aparatury.
Osoby, które przyjechały do nas pod koniec lipca i w sierpniu, były świadkami montażu najnowocześniejszej w Polsce aparatury projekcyjnej, a później, po przeszkoleniu, mogły prowadzić nagrane na taśmę sesje astronomiczne.

Nie wspomniałem jeszcze, co zyskiwali uczestnicy „akcji Przekrój”, jak ją roboczo nazwaliśmy. Otoż wymienione teleskopy wraz ze sprzętem pomocniczym były do ich dyspozycji w ciągu nocy. Obie teleskopy mają montaż paralaktyczny z tzw. napędem zegarowym. Zamiast przeciwwagi można przymocować aparat fotograficzny, małoobrazkowy, z obiektywami o ogniskowej od 58 mm do 1084 mm. Do teleskopu w miejsce okularu można założyć kamerę z okularem projekcyjnym, który daje obraz Księżyca o średnicy ok. 8 cm na kliszy. Z wyposażenia dodatkowego można jeszcze wymienić mikrometr okularowy, czy spektroskop okularowy. Sądzę więc, że dla miłośników, którzy mają trudności z dostępem do teleskopu, przyjazd do nas może być korzystny. Najwięcej skorzystają te osoby, które przygotują sobie program obserwacji tzn. zastanowią się, jakie obiekty zamierzają obejrzeć czy sfotografować.

Osoby znające język angielski czy niemiecki mogą ponadto skorzystać z wielu ciekawych książek będących w bibliotece Muzeum. Znajomość języka niemieckiego jest szczególnie cenna ze względu na turystów niemieckich, których wielu przyjedzie do Fromborka, a którzy częściej chcą patrzeć przez teleskop, niż nasí turyści.

Z relacji w czasie przeszłym przeszedłem na czas przyszły, gdyż także w bieżącym roku, w okresie od 15 maja do 15 września, zapraszamy miłośników astronomii do pomocy. Prócz pokazów nieba i demonstrowania wahadła Foucaulta czeka, na chętnych do oprawdzania, wystawa przyrządów astronomicznych. Jest też możliwość obsługiowania najnowocześniejszego w Polsce i jednego z nielicznych tego typu w świecie, małego planetarium. Warunki przyjazdu są takie same, jak w ubiegłym roku. Chętnych do pomocy prosimy o listy pod adresem: Planetarium Muzeum Mikołaja Kopernika, ul. Katedralna 12 14-530 Frombork.
KRONIKA

Amerykańskie plany eksploracji Układu Słonecznego w latach osiemdziesiątych

Badania Fobosa i Deimosa

50 telewizyjnych zdjęć Fobosa wykonanych przez Vikingi pozwoliło skompletować pełne dossier fotograficzne tego satelity, uzupełniając materiały otrzymane z Marinera 9. W dużym stopniu poznany też został Deimos, od strony zwróconej do Marinera. Rozdzielczość zdjęć Fobosa równa 200—300 metrów, w pojedynczych wypadkach sięga nawet 40 metrów. Otrzymano zdjęcia szczegółów powierzchni obu satelitów na różnych długościach fal. Stwierdzono niezwykle małą zmienność barwy powierzchni satelitów. Zdjęcia Fobosa wykonane przy fazyowych kątach oświetlenia dochodzących do 125 stopni pozwoliły uzyskać jego funkcję fotometryczną. Niektóre zdjęcia tego satelity otrzymano w położeniu Marsa, co może być wykorzystane w badaniach nad właściwościami rozpraszającymi atmosfery planety (1). Na Fobosie odkryto utwory powierzchniowe nieznane przedtem na innym obiektach Układu Słonecznego. Autorzy (2) rozróżniają typy takich struktur: 1 — brudne otaczające największy na Fobosie krater Stickney. Są to prawdopodobnie pęknięcia, powstałe przy udarowym formowaniu się krateru. 2 — bardzo liczne łańcuchy drobnych kraterów (najpewniej wtórnym), niezwiązane jednak z żadnym dużym kraterem na Fobosie. Rozłożone są one w przybliżeniu równolegle do pla-

Zdjęcia wykonane przez Vikingi wzbogacili też statystykę kraterów na Fobosie (237 obiektów) i Deimosie (27 obiektów). Zbadano rozmiarowy rozkład kraterów znajdujących się wewnątrz krateru Roche (61 obiektów). Wykazano tam niedostatek kraterów o rozmiarach poniżej 300 metrów, co może być spowodowane zarówno zacieraniem małych kraterów przez duże jak i niewystarczającą rozdzielczością zdjęć.

(2) Veverka J. et. al., tamże, 4213.

KLASYFIKACJA PULSARÓW

Klasyfikacja pulsarów w zależności od sposobu ich powstawania, zaproponowana w (1) i uzupełniona w (2), przewiduje podział tych obiektów na trzy klasy: S — pulsar powstaje w rezultacie wybuchu Supernowej będącej gwiazdą pojedynczą, D — pulsar powstaje w rezultacie wybuchu jednego ze składników układu podwójnego (którego ulega przy tym rozpadowi). Klasa D dzielona jest na dwie podklasy: D1 — eksplo- duję gwiazda o dużej masie, D2 — eksplojeduje gwiazda o masie mniejszej. Do klasy L Kochchar zalicza pulsary powstające poprzez uwolnienie gwiazdy neutronowej przy wybuchu drugiego składnika układu podwójnego, w skład którego wchodziła przedtem. Pulsary S i D1 powstają w pobliżu płaszczyzny galaktycznej, zaś L i D2 na dużych odległościach od niej.

Z. PAPROTNY
Masa ukryta w sąsiedztwie Słońca

Obserwowana lokalna gęstość masy (gwiazdy, pył i gaz międzygwiezdny) wynosi około 0,07 masy słonecznej na parsek sześcienny (1). Niewykreślonym karłow o typach widmowych M3—M5 odpowiada według obliczeń Krisciunasa (2) około 0,02 M_{Słońca}/pc^{3}. Między otrzymaną w ten sposób wielkością 0,09 M_{Słońca}/pc^{3} a limitem Oorta równym 0,11—0,17 (najprawdopodobniej 0,14) M_{Słońca}/pc^{3} pozostaje więc nadal różnica (masa ukryta). Krisciunas sugeruje, że — być może — problem masy ukrytej nie istnieje, bowiem limit Oorta wyznaczony jest eksperymentalnie i jako taki obarczony jest błędem. Jego zdaniem lokalna gęstość przestrzenna masy jest porównywalna z limitem Oorta, co po uwzględnieniu przybliżonej natury tego ostatniego oznaczałoby, że mogą one być w zasadzie sobie równe. Pracę przeglądową poświęconą problemowi masy ukrytej opublikował w roku 1976 Jones (3).

Zmiany w atmosferze Urana?

ZBIGNIEW PAPROTNY

Zenit. Errata po 500 latach

Powytyając się na źródła językoznawcze dr Dieter B. Herrmann (1) wskazuje na fatalny błąd drukarski, który przepisywany w różnych wydawnictwach astronomicznych od początku XVI wieku ustalił się w terminologii we wszystkich językach. Chodzi tu o zenit. Wyraz ten ma źródło w arabskim as-samt (as — głowa, samt — kierunek, można to tłumaczyć jako „ponadgłówek”). W czasie rozwoju arabskiej astronomii w Hiszpanii przeszedł on do hiszpańskiego jako semt, wymawiany z dźwięczną spółgłoską „s” — czyli zemt.

Dziś trudno by ustalić, kto pierwszy „poprawił” w druku m na ni, zastępując zemt przez zeni t...
Czy nie jest to dziełem osławionego drukarza i wydawcy z Lubeki Johanna Ballhorna (1528—1603), który miał pasję poprawiania („balhornizowania”) wszelkich tekstów jakie mu wpadły pod rękę?

(1) Astronomie in der Schule, 1978, 4, s. 93.

LUDWIK ZAJDLER

Przyszłe badania Marsa

ZBIGNIEW PAPROTY

Planetoida o najkrótszym okresie

10 września 1978 roku za pomocą 18-calowego teleskopu Schmidta na Mount Palomar (Kalifornia, USA) Eleonor He 1 in odkryła planetoidę oznaczoną pierwotnie 1978 RA, której okres obiegu wokół Słońca oka­zał się równy zaledwie 277 dni czyli mniej więcej 3/4 roku; jest to najkrótszy okres wśród znanych dotychczas planetoid. Na wniosek odkrywczy ten ciekawy obiekt (skatalogowany pod numerem 2100) na-
zwano Ra-Shalom dla upamiętnienia ostatnich wysiłków dla ustanowienia pokoju na Bliskim Wschodzie. W starożytnym Egipcie bog Słońca Ra był symbolem oświecenia, a słowo Shalom jest tradycyjnym hebrajskim poznaczającym pokój. Planetoida Ra-Shalom jest jedną z trzech dotychczas znanych, których orbity znajdujną się w przeważającej części wewnątrz orbity Ziemi; pozostałe dwie to 2062 Atena i 1976 UA. Jej odległość od Słońca zmienia się od 0,47 jednostki astronomicznej w peryhelium do 1,20 jednostki astronomicznej w apheilium. Mimośród orbity wynosi 0,43. Orbitę Ra-Shalom udało się stosunkowo dobrze wyznaczyć dzięki temu, że wykorzystano do tego nie tylko obserwacje wykonane w 1978 roku, ale również dwie obserwacje z 1975 roku należące — jak pierwotnie sądzono — do obiektu 1975 TB, a który okazał się identyczny z obiektem 1978 RA. Orbity planetoidy 1975 TB nie udało się wcześniej obliczyć ponieważ obserwowana ona była tylko dwukrotnie, a — jak wiadomo — dla jednoznacznego wyznaczenia orbity trzeba mieć conajmniej trzy obserwacje. Średnica Ra-Shalom jest oceniana na 3 do 4 km. Badania fotometryczne wskazują, że planetoida ma kształt sferyczny, a okres jej obrotu wokół osi wynosi około 12 godzin.

KRZYSZTOF ZIOŁKOWSKI

Krótkofalowe okna atmosferyczne

Dla ogromnej części widma elektromagnetycznego atmosfera Ziemi jest nieprzezroczysta. Dwa główne wyjątki to wąskie okno przepuszczające promieniowanie w zakresie widzialnym oraz okno radiowe, przepuszczające dla fal e—m w obszarze długości od około 1 cm do 30 m. Brak przy tym ostrej granicy od strony większych długości fal — absorpcja po prostu stopniowo wzrasta. Od strony fal krótszych istnieje dość ostre ograniczenie przypadające na około 6 milimetrów. Poniżej tej długości znajdują się jeszcze cztery wąskie obszary o niższej absorpcji. Ponieważ jest ona proporcjonalna do zawartości pary wodnej w atmosferze, owe 4 okna można wykorzystywać podczas badań prowadzonych w obserwatoriach wysokoogórskich (ewentualnie samolotowych lub balonowych). W załączonej tabeli charakteryzującej wspomniane okna, dane dotyczące osłabienia sygnału oraz wkładu szumowego atmosfery ziemskiej odnoszą się do zawartości pary wodnej w atmosferze równoważnej 3 milimetrom słupa H2O.

<table>
<thead>
<tr>
<th>Częstotliwość (GHz)</th>
<th>Dł. fali (mm)</th>
<th>Osłab. sygnału (dB)</th>
<th>Wkład szumowy atmosf. (K) (elewacja 20°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>zakres</td>
<td>środek</td>
<td>zenit</td>
</tr>
<tr>
<td>67—120</td>
<td>2,5—4,5</td>
<td>3,5</td>
<td>0,3</td>
</tr>
<tr>
<td>130—160</td>
<td>1,9—2,3</td>
<td>2,1</td>
<td>0,5</td>
</tr>
<tr>
<td>210—300</td>
<td>1,0—1,4</td>
<td>1,2</td>
<td>0,7</td>
</tr>
<tr>
<td>340—440</td>
<td>0,7—0,9</td>
<td>0,8</td>
<td>3,5</td>
</tr>
</tbody>
</table>
Zasadniczą część pracy von Hoernera zajmuje szczegółowa dyskusja limitów grawitacyjnego i termicznego na radioteleskopy naziemne.

Z. PAPROTYN

Wodór i deuter w okolicach Słońca

Obserwacje nadfioletowej linii alfa Lymana przeprowadzone przez OAO Copernicus dostarczyły informacji o gęstości przestrzennej wodoru i deuteru w kierunkach na Alfa Aurigae \(0.03 \pm 0.01 \text{ cm}^{-3}\) oraz Alfa Centauri A \(0.20 \pm 0.05 \text{ cm}^{-3}\). Wynika z tego, że gaz międzygwiezdny w okolicach Słońca (do około 14 parseków) rozłożony jest niejednorodnie. Stosunek ilościowy deuteru do wodoru wynoszący dla kierunku na Alfa Aurigae \(3.9 (±5.7—1.7) \times 10^{-5}\) oraz \(0.24 (±0.12—0.07) \times 10^{-5}\) dla kierunku na Alfa Centauri A, dowodzi zmiennej zawartości deuteru w przestrzeni międzygwiezdnej.

Z. PAPROTYN

Gwiazda Barnarda

Dorobek 60 lat obserwacji gwiazdy Barnarda (1916—1976), prowadzony za pomocą 24-calowego refraktora Obserwatorium Sproul, podsumowany został niedawno przez wieloletniego dyrektora tej placówki Petera van de Kampa. Gwiazda Barnarda jest jedną z najbliżej położnych (paralaksa \(0.545 \text{ cm} \text{ s}^{-1}\)) o odległości około 6 lat świetlnych, a przy tym wykazuje najszybszy ruch własny równy \(10.31 \text{ s}^{-1}\) na rok, na co składa się jej prędkość radialna \(—108 \text{ km/s}\) oraz tangencyjna \(89 \text{ km/s}\). Jasność wizualna gwiazdy Barnarda wynosząca aktualnie \(9.54 \text{ mag}\) maleje z prędkością \(0.013 \text{ mag na rok}\). Bardzo szczegółowa analiza ruchu własnego gwiazdy Barnarda w zależności od wybranych gwiazd odniesienia, doprowadziła do odkrycia zakłóceń w jego prostoliniowości, które przypisano graviacyjnemu oddziaływaniu planet jakoby ją okrążających. Dificzni autorzy, w zależności od posiadanego materiału obserwacyjnego i zastosowanych do jego obróbki metod analitycznych, sugerowali istnienie od 1 do 5 planet w układzie planetarnym gwiazdy Barnarda. Ostatecznie prace zdają się potwierdzić obecność 2 planet o okresach obiegu 11,7 i 18,5 roku. Analiza przeprowadzona przez van de Kampa w omawanej pracy, oparta na materiale pochodzącym wyłącznie z Obserwatorium Sproul, potwierdziła istnienie perturbacji związanych z planetą bliższą.

Z. PAPROTYN

Nowy program SETI

W okresie od stycznia do kwietnia 1978 w obserwatorium Arecibo (radioteleskop o średnicy 305 metrów) P. Horowitz prowadził poszukiwania skrajnie monochromatycznych sygnałów emitowanych przez hi-
potetyczne cywilizacje pozaziemskie (1). Nasłuch ograniczony był do pasma o szerokości 1 kHz, zawierającego w centrum linię 1,4 GHz wodoru neutralnego. Obserwowano około 200 gwiazd podobnych do Słońca, położonych w promieniu 25 parseków od niego i dostępnych obserwacji z szerokości geograficznej Arecibo (od 0 do +38 stopni w deklinacji). W przypadku każdej z gwiazd pasmo 1 kHz przeglądało się do Rozkładu 0,015 Hz w czasie 100 sekund. Ograniczenie się do wąskiego przedziału częstotliwości rozłożonego wokół linii 1,4 GHz było konsekwencją przyjęcia założenia, iż nadawcy sygnału rozumnego dokonują ciągłej korekty częstotliwości, uwzględniającej ruchy względne własne i adresatów i sprawiającej, że sygnał odbierany jest na częstotliwości zbliżonej do wyznaczonej laboratoryjnie częstotliwości wodoru. W Arecibo kompensowano przesuniecie doplerowskie będące efektem ruchu obrotowego Ziemi, co wymagało przestrzajania częstotliwości odbiornika co kilka milisekund. Procedura ta znaczyła ułatwiać eliminację radiointerferencji pochodzenia ziemskiego, nękających wszystkie dotychczasowe programy poszukiwawcze. W łącznym czasie 80 godzin „przesłuchano” 185 gwiazd, z czego 60 więcej niż jeden raz. Nie wykryto żadnych emisji wąskopasmowych, nie zanotowano nawet ani jednego fałszywego alarmu wywołanego radioemisjami ziemskimi. W opisanym programie osiągnięto taki poziom czułości, że z łatwością odkryte zostałyby sygnały nadane z odległości 370 parseków, z mocą 1 MW i za pomocą instalacji podobnej do tej z Arecibo. Obopólną (tzn. u nadawcy i odbiorcy) korektę przesunięć doplerowskich, wywołanych ich ruchami względnych w Galaktyce, zaproponowano już w roku 1961 (2). Ideę tę rozwinął R. S. Dixon (3) proponując stosowanie tzw. strategii GSR (Galactic Standard of Rest). Polega ona na prowadzeniu korekty częstotliwości względem wspólnego punktu odniesienia, którym dla rozmówców galaktycznych mogłoby być barycentrum Galaktyki.

ZBIGNIEW PAPROTNY

Z życia Oddziału w Ostrowcu Świętokrzyskim

Zarząd ostrowieckiego oddziału PTMA włączając się do Apelu Zarządu Głównego o zorganizowanie obchodów 505 rocznicy urodzin Mikołaja Kopernika zorganizował w dniu 24 lutego 1978 r. w Klubie „Primo” Ostrowieckiej Spółdzielni Mieszkaniowej wieczornicę poświęconą tej rocznicy.

W imprezie uczestniczyło 47 osób.

Zarząd Oddziału PTMA w Ostrowcu
OBSERWACJE

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 12/78

Plamotwórcza aktywność Słońca w grudniu 1978 r. nieco wzrosła w porównaniu do miesiąca poprzedniego. Średnia miesięczna względna liczba Wolfa (month mean Wolf Number) za miesiąc

grudzień 1978 r. \(R = 108.3 \)

W grudniu na widocznej tarczy Słońca zaobserwowano powstanie 24 nowych grup plam słonecznych. Tylko jedna z nowych grup osiągnęła powierzchnię przekraczającą \(1000 \cdot 10^{-6} \text{ p. p. s.} \); większość grup była średniej wielkości, co dało w sumie dość znaczną wartość średniej miesięcznej powierzchni plam. Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc

grudzień 1978 r. \(S = 1580 \cdot 10^{-6} \text{ p. p. s.} \)

Średnia roczna względna liczba Wolfa (year mean relative Number):

\[R_{1978} = 92.1, \]

wzrosła więc w stosunku do roku poprzedniego \((R_{1977} = 28.6) \) ponad trzykrotnie. Tak znaczny wzrost liczby plamowych świadczy o szybko zbliżającym się maksimum, które może wystąpić już na początku 1980 r. lub nawet w końcu roku 1979. Średnia roczna powierzchnia plam (year mean Area of Sunspots) wyniosła

\[S_{1978} = 1027 \cdot 10^{-6} \]

Wskaźnik zmienności plamowej 21 cyklu do czerwca 1978 r. \(Z = 13.4 \)

Dzienne liczby plamowe (daily Wolf Numbers) w grudniu 1978 r.:

Dąbrowa Górnicza, 10 stycznia 1979 r.

WACŁAW SZYMAŃSKI

Raport XII 1978 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 11,0 (127 MHz, 31 dni obserwacji), i 175,1 (2800 MHz, 21 dni). Średnie miesięczne wskaźników zmienności — 0,65.

Z 21 zjawisk niezwykłych, zaobserwowanych w tym miesiącu na częstości 127 MHz, 16 to burze szumowe, stąd też dość wysoka
średnia zmienna (w 1978 r. wyższą była tylko średnia lutego). Naj-
większą gęstość wybuchów (wskaźnik zmiennosci 3) miała burza z dnia
11. XII, której towarzyszył również największy średni poziom promie-
niowania ciągłego (rys. 1). Mimo wysokiej aktywności Słońca nie
stwierdzono ani jednego wielkiego wybuchu (typu GB). Na częstotli-
wości 2800 MHz obserwowano jeden wybuch (dnia 7. XII).

Raport ten kończy przedstawianie obserwacji w roku 1978, który,
jak to sugerują wskaźniki średnie roczne, był na częstości 127 MHz
znacznie aktywniejszy niż sporo lat poprzednich. Najpierw jednak od-
notujemy coś co cieszy — nowy ładny rekord w kompletności obser-
vacji: 99,2% możliwych dni. Średni strumień roku w jego 362 dniach
wyniósł 14,9 su (!) i wartością ustępuje jedynie średniej w roku 1960
(wówczas było 16,9 su w 139 dniach). Średni wskaźnik zmiennosci
burz szumowych osiągnął wartość 0,40, co nie wydaje się zbyt wiele
w porównaniu np. z latami 1966—72, jednakże ten parametr ocenia się
obecnie wg nowych kryteriów i takie porównanie może nie być miano-
dajne. W historii toruńskich obserwacji nigdy nie opracowano tak
wielkiej liczby jak w 1978 r. Było ich 252, co daje średni 0,70 wy-
buchów na dzień. Tak wysoką średnią zanotowano wcześniej tylko
w 1959 roku w 305 dniach obserwacyjnych. I tu nasuwa się uwaga,
że na ilość opracowanych zjawisk istotny wpływ ma obecność burz
szumowych, które jeszcze przed czterema laty traktowane były trochę
po macoszemu.

Reasumując, w 1978 r. radiowa aktywność Słońca wzrosła w spo-
sób bardzo wyraźny w stosunku do lat poprzednich. Wspomniana wy-
żej rekordowe liczby nie koniecznie muszą wskazywać na zapowiedź
wyjątkowo wysokiego maksimum bieżącego cyklu aktywności Słońca,
choćby ze względu na możliwe istotne różnice w metodyce opracowań
obserwacji w latach ubiegłych.

Toruń, 10 stycznia 1979 r.
K. M. BORKOWSKI, H. WEĽNOWSKI
KRONIKA PTMA

Jubileusz Docenta Doktora Kazimierza Kordylewskiego

Zezwolenie zainaugurowało VIII Dni Astronautyki, obchodzone uroczysto-

czyście w Bydgoszczy, Fromborku, Grudziądzu, Katowicach, Krakowie,

Mgr Marian Markowski — dyrektor Muzeum Lotnictwa i Astronautyki, przemówieniu okolicznościowym scharakteryzował osiągnięcia ludzkości w minionym 20-leciu w zakresie zdobywania Kosmosu oraz polski wkład w te osiągnięcia.

W ostatnim punkcie zebrania Doc. dr inż. Jacek Walczewski wy-
i RM-2 na Pustyni Błędowskiej, zainicjowanych 20 lat temu pierwszym startem rakiety RM-1 w dniu 10 X 1958 r. W tym okresie Polska była jednym z nielicznych państw, które dokonywały tego rodzaju eksperymentów. Na zakończenie wystąpił przewodniczący Śląskiego Wojewódzkiego Oddziału Polskiego Towarzystwa Astronautycznego Mgr inż. Władysław Geisler, który podziękował za zaproszenie na tak milą uroczystość i życzył Jubilatowi i bratniemu, krakowskiemu oddziałowi PTA wiele pomyślności i sukcesów w pracy.

Tak więc byliśmy uczestnikami jeszcze jednego zgromadzenia publicznego, na którym sprawy przeszłości i przyszłości, astronomii i astronautyki, nauki i popularizacji — spłatały się w budującą całość, tak zresztą jak w bogatej i niepospolitej osobowości Docenta doktora astronomii i wielkiego znawcy astronautyki — Kazimierza Kordylewskiego.

STANISŁAW LUBERTOWICZ

KRONIKA HISTORYCZNA

Jan Baranowski (1800—1879)

Do najbardziej zasłużonych astronomów polskich XIX w. zaliczyć należy Jana Baranowskiego, wieloletniego dyrektora Obserwatorium Warszawskiego.

Urodzony 26 grudnia 1800 r. w Sławkowie w Ziemi Olkuskiej studia uniwersyteckie rozpoczął w Krakowie a ukończył w Warszawie w lipcu 1825 r. magisterium. W parę tygodni później mianowany adiunktem w Obserwatorium Astronomicznym Uniwersytetu Warszawskiego, pomagał Franciszkowi Armińskiemu (1789—1848), założycielowi i pierwszemu dyrektorowi Obserwatorium, przy ustawianiu i regulowaniu instrumentów. Wkrótce potem uczestniczył w pracy mającej na celu wyznaczenie współrzędnych geograficznych Obserwatorium. Oprócz obserwacji astronomicznych przez wiele lat wykonywał również regularne obserwacje meteorologiczne. W 1835 r. udał się za granicę w celu wydoskonalenia się w technice obserwacyjnej. Pewien czas spędził w Królewcu, gdzie pracował pod kierownictwem Friedricha Wilhelmia Bessela (1784—1846), jednego z najwybitniejszych ówczesnych astronomów. Zwiedziwszy następnie inne obserwatoria niemieckie wrócił do Warszawy w 1836 r. Powołany na wykładowcę astronomii na dodatkowych kursach pedagogicznych, prowadził wykłady w latach 1837—1842, tj. do zamknięcia kursów. Po śmierci Armińskiego został mianowany dyrektorem Obserwatorium i stanowisko to zajmował do 1869 r. W czasie swych rządów znacznie pomnożył bibliotekę oraz nałożył nowe instrumenty, z których najważniejszy był sprowadzony w 1859 r. refraktor z sześciocalowym obiektywem.

Z jego prac astronomicznych warto wymienić ogłoszone w latach 1836—1837 obliczenia dotyczące komety Bieli oraz dokładniejsze wyznaczenie współrzędnych geograficznych Obserwatorium Warszaw-
skiego, wykonane w latach 1844—1845 a połączone z przewożeniem chronometrów z Warszawy do Pułkowa pod Petersburgiem.

Bogatsza była jego działalność wydawnicza. Do rzeczy drobniejszych należy tu opublikowanie swoich wykładów jak również mniejszych prac i artykułów. Pierwszą większą pozycją było wydanie w 1849 r. wraz z geologiem Ludwikiem Zejsznerem (1805—1871) polskiego przekładu pierwszego tomu „Kosmosu” wybitnego niemieckiego przyrodnika Alexandra Humboldta (1769—1859). Następnie w 1858 r. spolszczył „Meteorologię” Foissaca, poprzedziszwszy ją wstępnym dotyczącym historii meteorologii w Polsce. Najważniejszą jednakże jego pracą było przetłumaczenie i wydanie w 1854 r. pierwszego łańcisko-polskiego tekstu dzieł wszystkich Mikołaja Kopernika. Było to dzieło ogromnej wagi. Stanowiło ono nie tylko publikację tego wiekopomnego dzieła, ale także wyeksponowanie postaci naszego wielkiego Rodaka, co w czasach niewoli miało ogromne znaczenie dla społeczeństwa polskiego.

W 1870 r. Baranowski przeszedł na emeryturę i przeniósł się do Lublina, do swego brata Walentego (1800—1879), tamtejszego biskupa. Tam też dożył swych dni. Zmarł 2 listopada 1879 r.

PRZEMYSŁAW RYBKA

Ludwik Antoni Birkenmajer (1855—1929)

Mija właśnie 50 lat od śmierci profesora Ludwika Antoniego Birkenmajera, jednego z najwybitniejszych polskich historyków nauk ścisłych a w szczególności astronomii. Ta właśnie okoliczność sprawia, że wypada wspomnieć tu jego postać i dorobek naukowy.

L. A. Birkenmajer pochodził z rodziny wywodzącej się z południowoniemieckiej rodziny spod Fryburga. Jego dziadek, Antoni (1778—1830), trafił na ziemie polskie jako napoleoński żołnierz kontyngentu badeńskiego. Ranny podczas wyprawy na Moskwę leczył się w Zamku, a następnie osiadł w Tuchowie pod Tarnowem, gdzie ożenił się z Anną Wyszowską. Jego syn, Józef Herman (1825—1866), zupełnie już spolonizowany, żonaty z Petronelą Stefanowską, miał troje dzieci, z których Ludwik Antoni był najmłodszym. Urodzony 18 maja 1855 r. w miasteczku Lipsko w Galicji Wschodniej wkrótce stracił ojca, skutkiem czego młodość upłynęła mu w ciężkich warunkach materialnych. Po nauce w gimnazjum we Lwowie (1865—1873) studiował fizykę w Uniwersytecie Lwowskim w latach 1873—1878. Wykazywał wybitne zdolności w kierunku nauk matematyczno-fizycznych i już jako student II roku ogłosił swoją pierwszą drukowaną rozprawę z zakresu fizyki. W 1879 r. doktoryzował się, w rok później zaś złożył egzamin nauczycielski. Lecz już w 1878 r. objął posadę nauczyciela matematyki i fizyki w średniej szkole rolniczej w Czernichowie pod Krakowem. Tam spędził 31 lat życia, w tym od 1882 r. jako profesor. W 1881 r. habilitował się z zakresu fizyki teoretycznej w Uniwersytecie Jagiellońskim, od 1892 r. zaczął wygłaszać wykłady na temat historii nauk matematycznych, a w 1897 r. otrzymał tytuł profesora nadzwyczajnego tego przedmiotu. Opuściwszy Czernichów w 1909 r. osiadł na stałe w Krakowie. W 1910 r. został mianowany w Uniwersytecie Jagiellońskim „profesorem nadzwyczajnym bezpłatnym” a w sierpniu 1919 r. uzyskał pełne prawa profesorskie. W cztery miesiące później został profesorem zwyczajnym. Od 1893 r. był członkiem korespondentem, a od 1927 r.
czynnym członkiem Akademii Umiejętności. W 1882 r. ożenił się z Zofią, córką Franciszka Karlinstockiego, dyrektora Obserwatorium Krakowskiego. Zmarł 20 listopada 1929 r.

Birkenmajer ogłosił ponad sto prac naukowych o bardzo szerokim wachlarzu tematycznym. Dotyczyły one początkowo zagadnień z zakresu matematyki, fizyki, zwłaszcza teoretycznej, geografii, geofizyki i astronomii. Od ok. 1890 r. swe zainteresowania skupił na historii nauk matematycznych. Pierwsze prace z tej dziedziny ogłosił w latach 1890—1891. Po nich opracował większą monografię o działającym w XV w. wybitnym astronomie krakowskim Marcinie Bylicy z Olkusza (1892/3). Wkrótce potem w związku z nadchodzącym jubileuszem Uniwersytetu Jagiellońskiego zabrał się gorliwie do studiów nad życiem i pisami Mikołaja Kopernika, podejmując z jednej strony szeroko zakrojone poszukiwania archiwalne zarówno w Polsce jak i za granicą, z drugiej zaś poddając szczegółowej i dogłębnej analizie dzieła Kopernika. Rezultatem tego było wybitne dzieło pt. „Mikołaj Kopernik, część pierwsza: studia nad pracami Kopernika oraz materiały bibliograficzne" wydane w Krakowie w 1900 r. Była to jego najważniejsza praca nie mająca sobie równych. Druga większa kopernikańska pozytyjność — to „Stromata Copernicana", opublikowana w 1924 r. Z powyższą problematyką były też związane jego mniejsze już prace o powiązaniach między Markiem Beneventano, Bernardem Wapowskim i Kopernikiem w związku z najstarszą mapą Polski (1901 r.), o Koperniku i uniwersytecie w Padwie (1922 r.), o Mikołaju Wodze z Kwidzynia (1926 r.). Wszystkie te prace miały stanowić podstawę dla obszernego życiorysu Kopernika, w którym przede wszystkim miały być wyeksponowane dzieje jego myśli. Nie zdolawszy jednak w ciągu trzydziestoletnich badań wyjaśnić wszystkich szczegółów i problemów, Birkenmajer przerwał pisanie zapowiedzianej biografii, którą w rękopisie do prowadził do 1500 r., zaś syntezę swych poglądów na bieg myśli Kopernika wyłożył w paru okolicznościowych szkicach.

Birkenmajer podejmował także wydawanie niektórych cenniejszych zabytków naukowych, jak wybrane dzieła Marcina Króla i Wojciecha z Brudzewa. Zajmował się też siedemnastowiecznymi astronomami Stanisławem Pudłowskim i Tytusem Liwiuszem Burattiniem. Ogrom wykonanych prac i zapał Birkenmajera budzi podziw, bo wiem nie tylko był on wątłego zdrowia, ale też od wczesnej młodości był zmuszony do walki o byt materialny, najpierw dla siebie, matki i siostry, a potem dla własnej licznej rodziny. Pracował z prawdziwą pasją i wniósł ogromny wkład do skarbnicy nauki polskiej.

PRZEMYSŁAW RYBKA

NOWOŚCI WYDAWNICZE

Ta objętościowo niewielka książka znanego, radzieckiego popularzyzatora wiedzy astronomicznej, F. Ju. Zigla, którego artykuł o planetach trygonalnych był publikowany również na łamach „Uranii” (Nr 10, 1976), jest swego rodzaju krótką historią instrumentów astronomicz-
nych, chociaż w dwóch ostatnich rozdziałach Autor przedstawia również najnowsze osiągnięcia w dziedzinie współczesnych technik obserwacyjnych. Autor świadomie ogranicza tematykę książki słusznie zauważając: „Więcej będziemy mówić o metodach i instrumentach niż o wynikach badań. Lecz przecież droga bywa czasami nie mniej interesująca od ostatecznego celu”. I tak na dwustu bez mała stronach przedstawiony jest upór, wytrwałość i pomysłowość człowieka usiłującego zgłębić tajemnice Wszechświata — nawet wtedy, kiedy powszechnie uważano niebiosa za siedzibę bogów, nie wahano się badać zachowania ciała niebieskiego. Był to czas astronomii bez teleskopów, a niemal jedynymi narzędziami były, używanie do pomiarów odległości kątowych obiektów na nieboskłonie, instrumenty takie jak gnomon, baryometer, kwadrant, astrolabium, czy sfery armirane. Dawne obserwatoria, w których posługiwano się wymienionymi wyżej narzędziami, znajdujemy zupełnie odmiennymi od dzisiejszych — wystarczała wtedy widoczność aż po horyzont i bezchmurne, czyste niebo, toteż początkowo nie budowano specjalnych dostrzegalni i dopiero później zaczęto przeprowadzać obserwacje z tarasów świątyń, wiercholków babilońskich czy azteckich teoąalli. Niekiedy budowano specjalne wieże do przeprowadzania obserwacji — na ich płaskich wierzchołkach ustawiano przenośne instrumenty. Z czasem powstały całe kompleksy budynków służące już wyłącznie do dostrzegalni astronomicznej — jak na przykład dawne Obserwatorium Pekiński.

Bardziej szczegółowo Autor przedstawia działalność obserwacyjną dwóch największych astronomów Starożytności — Hipparcha i Ptolemeusza — oraz dwóch ostatnich najsłynniejszych obserwatorów ery „przedteleskopowej” — Uług-Beka i Tychona de Brahe.

Około 370 lat temu zostały wynalezione lunety. Wkrótce ten do- niosły wynalazek został zastosowany przez Galileusza do obserwacji astronomicznych. A 365 lat temu w Kaliszu po raz pierwszy wykonano montaż paralaktyczny lunet, przy użyciu których przeprowadzono w ogóle pierwsze optyczne obserwacje astronomiczne w Polsce — o czym jednak Autor nie wspomina. Pismo natomiast o teleskopie Jana Heweliusza i jego obserwacjach Księżycy. Szczególnie dużo miejsca poświęcone zostało obserwatorium Rosji i Związku Radzieckiego (łącznie z opisem sześciometrowego teleskopu), co jest zresztą zupełnie zrozumiałe. Przede wszystkim jednak Autor przedstawia powstawanie i udoskonalanie różnych typów teleskopów — zarówno refraktorów jak i reflektorów, opisując zmagania astronomów i optyków w celu uzyskania coraz większych zdolności rozdzielczych instrumentów, coraz doskonalszych obrazów wolnych od wad, a także uzyskania precyzyjnego sterowania ruchem teleskopu. Dalej F. Ju. Zigel omawia współczesne instrumenty optyczne oraz odbiorniki promieniowania — głównie klisze fotograficzne, które znalazły zastosowanie zwłaszcza w badaniach astrometrycznych i astrofizycznych (rejestracja widm gwiazd i innych obiektów kosmicznych). Autor snuje także rozważania na temat przyszłości teleskopów optycznych, lecz przywiązuje zbyt wielką wagę dla rozwoju naziemnej bazy obserwacyjnej. Oczywiście powstanie nowych naziemnych obserwatoriów nadal jest konieczne, zwłaszcza na półkuli poludniowej, nie mniej jednak przyszłość astronomii optycznej (a już na pewno w podcerwieni, nadfiolecie, nie mówiąc o promieniowaniu X i γ) należy do orbitalnych i księżycowych obserwatoriów, o czym Autor co prawda pisze, lecz już w samym zakoń-
Warto w tym miejscu podkreślić, że astronomia obserwacyjna przez długie jeszcze wieki będzie niemal jedynym sposobem poznawania Wszechświata, także modele kosmologiczne weryfikowane mogą być tylko na drodze obserwacyjnej. Nie rozwiąże tych problemów astrofizyka — narazie jedynie w obrębie Układu Słonecznego loty sond międzyplanetarnych wydatnie wspomagają obserwacje astronomiczne dostarczając dokładnych informacji o wyglądu powierzchni planet i o warunkach panujących na nich. Odległy jest natomiast czas lotów do gwiazd, nawet najbliższych, a już w ogóle trudno przewidzieć termin „pierwszej międzygalaktycznej” — stąd więc bierze się niesłabnąca rola astronomii obserwacyjnej, obserwacji teraz już prowadzonych we wszystkich zakresach widma, przy czym obecnie obok astronomii opytycznej, najważniejsze miejsce zajmuje radioastronomia. F. Ju. Zigel poświęca jej obszerny rozdział zaznajamiający Czytelników z historią i najnowszymi osiągnięciami radioastronomii — łącznie z problematyką SETI — poszukiwaniem cywilizacji pozaziemskich.

Oprócz wspomnianych już wcześniej obserwacji astronomicznych w podczerwieni i nadfiolecie Autor przedstawia pierwsze neutrinowe teleskopy mające za zadanie określić, jaki naprawdę procent energii słonecznej unoszony jest przez strumień neutrin biegnący z jądra naszej gwiazdy dziennnej. Negatywne wyniki obserwacji (rejestracji neutrin) wydają się świadczyć o pewnych „niedomaganiach” teorii opisującej procesy zachodzące we wnętrzu Słońca.

W swej niewielkiej książce F. Ju. Zigel daje przegląd niemal wszystkich technik obserwacji i metod astronomii obserwacyjnej — od pierwszych, prostych spostrzeżeń wykonanych nieuzbrojonym okiem aż po wysoce „wyrafinowane” instrumenty i sposoby obserwacji, już poza obszarem promieniowania widzialnego; tym bardziej tedy żałować wypadła, iż Autor nie zamieścił nawet wzmianki o próbach odkrycia promieniowania grawitacyjnego, którego źródłem mogą być tylko masywne obiekty kosmiczne.

Przedstawianą książkę należy gorąco polecić wszystkim miłośnikom astronomii, których interesuje praktyczna strona obserwacji — można bowiem znaleźć w niej wiele interesującej informacji o historii powstawania instrumentów astronomicznych, o sposobach obserwacji i o najnowocześniejszych instrumentach astronomicznych instalowanych na Ziemi i na sztucznych satelitach — orbitalnych obserwatoriach.

T. ZBIGNIEW DWORAK

Zakrycia gwiazd przez Księżyce

<table>
<thead>
<tr>
<th>UT</th>
<th>Nr, nazwa i jasność gw., zjawisko</th>
<th>Moment (minuty) i kąty pozycyjne (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>V 2d20h</td>
<td>5793 +16°1580 7,1 p</td>
<td>34,5</td>
</tr>
<tr>
<td>15 23</td>
<td>5794 173B Sgr 6,3 k</td>
<td>—</td>
</tr>
<tr>
<td>15 25</td>
<td>5785 190B Sgr 5,4 k</td>
<td>42,0</td>
</tr>
<tr>
<td>28 19</td>
<td>5796 26 Gem 5,1 p</td>
<td>20,9</td>
</tr>
</tbody>
</table>
Nr, nazwa i jasność gw., zjawisko | Nr, nazwa i jasność gw., zjawisko | Moment (minuty) i kąty pozycyjne (°)
---|---|---|---|---|---|---|---|---|---
| VI 1 21 | 5797 +10°2100 7,1 p | 04,2 | 06,1 | 04,2 | 09,0 | 06,4 | 76 | 38 |
| 2 20 | 5798 +7°2358 7,0 p | — | — | — | 24,3 | 198 | 162 |
| 2 20 | 5799 +7°2358 7,0 p | — | — | — | 29,2 | 207 | 170 |
| 3 20 | 5800 89 Leo 5,8 p | 18,3 | 18,9 | 21,4 | 24,5 | 25,9 | 55 | 25 |
| VII 2 21 | 5801 33 Vir 6,2 p | 34,3 | — | — | 97 | 62 |
| 13 23 | 5802 317B Aqr 6,3 k | 39,8 | 38,8 | 42,4 | 41,2 | 44,4 | 289 | 320 |

Źródło: Rocznik Astronomiczny Obserwatorium Krakowskiego. Podane wartości A_p i A_z są średnimi dla miast: Poznań (P), Wrocław (Wr), Toruń (T), Kraków (K) i Warszawa (Wa). „p” i „k” oznacza początek wzgl. koniec zjawiska zakrycia. Momenty w czasie uniwersalnym UT.

Efemerydy punktów Lagrange’a L_4 i L_5 w układzie Ziemia—Księżyc dla obserwacji Pyłowych Księżyców Ziemi oraz punktów libracyjnych L_4 i L_5 w układzie Słońce—Wenus dla utworzenia poszukiwań ewentualnych ciał, jakie mogą się w tych punktach znajdować, zamieszczone są w Roczniku na str. 133—136 oraz w „Cracow Obserwatory Reprint No 122” (tu także przewidywane momenty zaćmień Pyłowych Księżyców Ziemi oraz zakryć przez nie Jowisza).

L. ZAJDLER

KALENDARZYK ASTRONOMICZNY

Opracował G. Sitarski

Słońce

W czerwcu Słońce wchodzi w znak Raka i osiąga najwyższy punkt na ekliptyce ponad równikiem niebieskim; od tej chwili liczymy początek lata astronomicznego. W tym czasie mamy też najdłuższe dni i najkrótsze noce na naszej półkuli; dla kilku dat podajemy momenty wschodu i zachodu Słońca w Warszawie: 1d wsch. 3h21m, zach. 19h47m; 11d wsch. 3h15m, zach. 19h56m; 21d wsch. 3h14m, zach. 20h1m; 1d lipca wsch. 3h18m, zach. 20h1m.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B_0</th>
<th>L_0</th>
<th>Data 1979</th>
<th>P</th>
<th>B_0</th>
<th>L_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI 1</td>
<td>—15°50</td>
<td>—0°64</td>
<td>244°48</td>
<td>9</td>
<td>—12.36</td>
<td>+0.33</td>
<td>138.59</td>
</tr>
<tr>
<td>3</td>
<td>—14.74</td>
<td>—0.40</td>
<td>218.00</td>
<td>11</td>
<td>—11.54</td>
<td>+0.57</td>
<td>112.12</td>
</tr>
<tr>
<td>5</td>
<td>—13.96</td>
<td>—0.16</td>
<td>191.54</td>
<td>13</td>
<td>—10.71</td>
<td>+0.81</td>
<td>85.65</td>
</tr>
<tr>
<td>7</td>
<td>—13.17</td>
<td>+0.09</td>
<td>165.06</td>
<td>15</td>
<td>—9.86</td>
<td>+1.05</td>
<td>59.17</td>
</tr>
</tbody>
</table>
Księżyc

Ciemne, bezksiężycowe noce będziemy mieli w drugiej połowie miesiąca, bowiem kolejność faz Księżyca jest w czerwcu następująca: pierwsza kwadra 2d^24h, pełnia 10d^{13}h, ostatnia kwadra 17d^6h, now 24d^31h. W perygeum Księżyca znajdzie się 13 czerwca, natomiast w apogeum dwukrotnie, 1 i 29 czerwca. W czerwcu tarcza Księżyca zakryje Aldebarana, najjaśniejszą gwiazdę w gwiazdozbiorze Byka, zjawisko to będzie jednak u nas niewidoczne.

Planety i planetoidy

W czerwcu mamy bardzo dobre warunki dla obserwacji Merkurego. Odnajdziemy go wieczorem nisko nad zachodnim horyzontem, w pierwszych dniach miesiąca jako jasną gwiazdę około —1.5 wielkości, stopniowo słabnącą do około zerowej wielkości pod koniec czerwca. Kto nie widział jeszcze Merkurego, tym razem powinien go odnaleźć w połowie czerwca jeszcze w godzinę po zachodzie Słońca.

Wenus jest jeszcze ciągle widoczna jako Gwiazda Poranna około —3.3 wielkości nisko nad wschodnim horyzontem; ze względu na swą jasność powinna być widoczna nawet w blasku Słońca kryjącego się nisko pod horyzontem. Mars wschodzi nad ranem, ale świeci jak czerwona gwiazda tylko +1.5 wielkości, nie jest więc wdziewczynnym obiektem dla obserwacji. Jowisz widoczny jest wieczorem jako gwiazda —1.4 wielkości w gwiazdozbiorze Raka i przez kilka godzin możemy jeszcze obserwować zjawiska w układzie czterech najjaśniejszych księżyców Jowisza. Saturn widoczny jest w pierwszej połowie nocy jako gwiazda +1 wielkości w gwiazdozbiorze Węzownika (8 wielko. gwiazd.), a Neptun przez całą noc ale nisko nad horyzontem w gwiazdozbiorze Wagi prawie przez cały rok (6 wielk. gwiazd.), a Pluto przez całą noc ale nisko nad horyzontem w gwiazdozbiorze Wagi prawie przez cały rok (8 wielk. gwiazd.). Pluto widoczny jest wieczorem na granicy gwiazdozbiorów Panny i Wolarza, ale jako słaba gwiazda 14 wielkości dostępny jest tylko przez duże instrumenty.

Meteory

Od 10 do 21 czerwca promieniują meteory z roju czerwcowych Lirydów. Radiant meteorów leży w gwiazdozbiorze Lutni i ma współrzęd-
ne: rekt. 18h32m, dekl. +35°. Rój nie jest bogaty, ale możemy w ciągu godziny dostrzec kilka niebieskawych meteorów w okresie maksymalnej aktywności 16 czerwca.

* * *

1d Od 19h7m księżyc 2 Jowisza ukryty jest za tarczą planety.
2d O 17h Saturn w złączeniu z Księżycem w odległości 2°. Wicezorem księżyc 3 przechodzi na tle tarczy Jowisza do 22h0m, a jego cień pojawi się na tarczy planety dopiero o 22h36m.
4d Do 20h53m na tarczy Jowisza widoczny jest cień jego 4 księżyca. Obserwujemy także początek przejścia 1 księżyca i jego cienia na tarczy planety: księżyc 1 rozpoczyna przejście o 21h1m, a jego cień pojawi się na tarczy o 22h1m.
5d Księżyca 1 ukryty jest za tarczą Jowisza, a potem w strefie jego cienia. O 21h40m obserwujemy koniec zaćmienia tego księżyca (pojawi się on nagle z prawej strony blisko brzegu tarczy, patrząc przez lunetę odwracającą).
8d O 5h Uran w złączeniu z Księżykiem w odl. 4°. Wicezorem do brzegu tarczy Jowisza zbliża się jego księżyc 2; o 21h53m nastąpi początek zakrycia tego księżyca przez tarczę planety.
10d O 13h Neptun znajdzie się w złączeniu z Księżykiem w odl. 4°, a o 16h w przeciwstawieniu ze Słońcem względem Ziemi. Wicezorem do 21h48m na tarczy Jowisza widoczny jest cień jego 2 księżyca.
13d O 20h43m po tarczy Jowisza wędruje cień jego 1 księżyca.
17d Na tle tarczy Jowisza przechodzi księżyc 2 i jest niewidoczny, natomiast od 21h33m widoczny jest cień tego księżyca.
20d O 4h Wenus w złączeniu z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiórze Byka (w odl. 5°). Wicezorem na tle tarczy Jowisza przechodzi księżyc 1 wraz ze swym cieniem; obserwujemy koniec przejścia: księżyca o 21h48m, cienia o 22h38m.
21d Mars w złączeniu z Księżykiem w odl. 5°.
22d O 0h56m Słońce wstępuje w znak Raka; mamy początek lata astronomicznego. O 18h bliskie złączenie Aldebarana z Księżykiem; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie na Północnym Pacyfiku, w Ameryce Północnej i w Zachodniej Europie. O 23h Merkury w złączeniu z Polluksen (w odl. 5°), jedną z dwóch gwiazd pierwszej wielkości w gwiazdozbiórze Bliźniąt.
23d Wenus w złączeniu z Księżykiem w odl. 4°.
26d O 19h złączenie Merkurego z Księżykiem w odl. 5°. W pobliżu Jowisza dostrzegamy brak jego 2 księżyca: ukryty jest on za tarczą planety, a potem w jej cieniu i o 21h17m obserwujemy koniec jego zaćmienia (pojawi się z prawej strony tarczy, w odległości nieco większej od jej promienia).
27d O 17h Jowisz w złączeniu z Księżykiem w odl. 3°. Wicezorem dwa księżyce Jowisza zbliżają się do brzegu tarczy planety, w związku z czym o 21h31m obserwujemy początek przejścia księżyca 1 na tle tarczy, a o 21h46m początek zakrycia księżyca 3 przez tarczę planety.
28d Księżyca 1 ukryty jest w cieniu Jowisza. O 21h52m nastąpi koniec zaćmienia.
30d Saturn w złączeniu z Księżykiem w odl. 2°.

Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim.
CONTENTS

S. R. Brzostkiewicz — The System of Pluto and its secrets.

M. Heller — The First Three Minutes of Cosmic Evolution.

M. Zawilski — Contact Occultations of Stars by the Moon visible in Poland in the Year 1979.

A. Pilski — Holidays in Planetarium.

Chronicle: American plans of explorations of the Solar System in the eightieth years — Explorations of Phobos and Deimos — Classification of pulsars — A hidden mass in the neighbourhood of the Sun — Changes in the atmosphere of Uran? — Zenith. Erratum after 500 years — Forthcoming explorations of Mars — A planetoid with the shortest period of revolution — Short-wave atmospheric windows — Hydrogen and deuterium in the neighbourhood of the Sun — The Barnard’s Star — A new program of SETI.

Observations.

Historical Chronicle: Jan Baranowski — Ludwik A. Birkenmajer.

New Books.

Astronomical Calendar.

СОДЕРЖАНИЕ

C. R. Бжосткович — Система Плутона и её загадки.

M. Хеллер — Первое три минуты космической эволюции.

M. Завильски — Краевые покрытия звёзд Луны в Польше в 1979 г.

A. Пильски — Каникулы в планетарии.

Хроника: Американские планы исследования Солнечной Системы в восмидесятые годы — Исследования Фобоса и Деймоса — Классификация пульсаров — Скрытая масса вблизи Солнца — Изменения в атмосфере Урана? — Зенит. Управленние ошибки 500 лет спустя — Будущие исследования Марса — Малая планета с кратчайшим периодом обращения — Коротковолновые атмосферные окна — Водород и дейтерий в окрестностях Солнца — Звёзды Барнarda — Новая программа SETI.

Изображения.

Хроника Общества: (PTMA): Юбилей К. Кордильевского.

Историческая Хроника: Ян Барановский — Людвик А. Биркенмаер.

Новые книги.

Астрономический календарь.
W chwili oddawania numeru do druku wielkim powodzeniem cieszy się wystawa pt. „Anatomia czasu” w Muzeum Techniki NOT w Warszawie. Składają się na nią bogate zbiory gnomoniczne, zegary mechaniczne o wartości historycznej oraz liczne eksponaty dotyczące różnych aspektów pojęcia czasu (wśród nich — żywy kogut). Po 3 VI wystawa czynna będzie w Jędrzejowie.

W okresie 13 III — 14 IV w Muzeum Techniki czynna będzie wystawa „Albert Einstein 1879—1979”, a od 15 V do 7 X 1979 — ekspozycja na temat sztucznych satelitów pt. „Geodezja kosmiczna”. Stałą ekspozycją w Muzeum Techniki jest „Astronomia i astronomia”, w skład której wchodzi Planetarium oraz zorganizowana wspólnie z Oddziałem Warszawskim PTMA wystawa „Sam możesz poznać Wszechświat”; tu m. in. odbywają się praktyczne pokazy budowania teleskopu amatorskiego.

Miłośników astronomii zachęcamy do zwiedzania Muzeum. Informacji udziela i zgłoszenia wycieczek przyjmuje Dział Oświatowy M.T., 00-901 Warszawa, Palac Kultury i Nauki, tel. 200-211, wewn. 2761 lub 2747.
X. Kosmologia Milne’a

1. Przywilej opozycji

Kosmologia relatywistyczna nie zaspakajała estetycznych wymagań stawianych przez Milne’a. „Zacząłem zastanawiać się nad tym problemem — pisze Milne — bynajmniej nie powodowany uczuciem niechęci do tych (tj. ogólnie uznawanych) teorii, a tym bardziej w stosunku do ogólnej teorii względności. Istniejące teorie pod względem matematycznym są najwyższej wartości. Ale ich powszechnie przyjęte interpretacje w terminach «rozszerzającej się przestrzeni» sprawiają mi najniższe kłopoty. Ruch jako następstwo geometrii różniącej się od geometrii powszechnie stosowanej w fizyce był wiarygod-
nym pojęciem. Grawitacja jako odkształcenie przestrzeni była wiarygodnym pojęciem, chociaż pojęcie to nie zawierało w sobie najmniejszej aluzji co do natury i pochodzenia samej grawitacji; dlaczego obecność materii powinna wywierać wpływ na «przestrzeń», pozostawało bez wyjaśnień. Fizycy matematyczni przypisując strukturę przestrzeni, przywracając strukturę temu, co jest bez struktury, w rzeczywistości z powrotem wprowadzili eter". ([5], s. 2).

Milne domagał się, by teoria fizyczna nie tylko dostarczała przewidywań zgodnych z obserwacjami, ale by również dawała „wgląd do zjawisk” (insight into phenomena). Sam twierdził, że jego kosmologia eksploruje „matematyczne konsekwencje ogólnych pojęć wyprowadzonych z doświadczenia”. ([5], s. 140 w przypisie).

2. Równouprawnienie obserwatorów — zasada kosmologiczna

Kłopot powstaje gdy trzeba odpowiedzieć na pytanie, co to znaczy „wgląd do zjawisk” i jaki to system „ogólnych pojęć” należy wyprowadzić z doświadczenia. Odpowiedź na te pytania może dostarczyć jedynie subiektywna intuicja autora. Wydaje się, że „wgląd do zjawisk” oznaczał dla Milne’a zgodność wyobrażeniowej interpretacji teorii z tzw. zdrowym rozsądkiem, ale ponieważ nie ma zdrowego rozsądku w ogóle, szło więc
o zdrowy rozsądek wykształcony na fizyce klasycznej. Warto pamiętać, że teorię względności otaczała wówczas atmosfera pewnego mistycyzmu i to, co dziś jest „chlebem powszechnym” dla studenta przygotowującego się do egzaminu, w czasach Milne’a było jeszcze otoczone nimbem nowości. Ale teoria względności weszła już nieodwracalnie do nauki i Milne korzystał z niej bardziej, niż przypuszczał.

I tak, inspirowany niewątpliwie przez teorię względności, Milne postulował równouprawnienie wszystkich obserwatorów we Wszechświecie. Stało się to naczelnym aksjomatem jego teorii. Milne pisał: „Zasada względności została w istocie (przeze mnie) użyta w nowy sposób; w sposób, który zasadniczo nie zależy od obserwacyjnej weryfikacji; zasada ta została zastosowana w samej oczywistej formie domagającej się, by dwaj obserwatorzy, którzy pozostają w równoważnych relacjach do całego układu i którzy godzą się porównywać swoje obserwacje według tych samych reguł, opisywali zachowanie się jakiejkolwiek cząstki przy pomocy tych samych funkcji współrzędnych”. ([5], s. 4)

Postulat równouprawnienia wszystkich obserwatorów Milne pierwszy nazwał zasadą kosmologiczną (nazwa ta na dobre zapadła się w kosmologii) i uważał ją za nowe sformułowanie zasady względności. Podejrzewał nawet, że einsteinowska zasada względności jest węższa od jego ujęcia, a co za tym idzie, że teoria względności jest tylko szczególnym przypadkiem jego teorii.

W skład założeń kosmologii Milne’a wchodziła zasada kosmologiczna oraz postulaty związane z pomiarem czasu i przestrzeni.
3. Pomiary czasu i przestrzeni

Zdaniem Milne’a pomiary czasu są bardziej podstawowe od pomiarów przestrzennych, a to dlatego, że poczucie upływania czasu jest bezpośrednią daną naszej świadomości ([5], s. 14). Każdy obserwator posiada zatem poczucie czasu, tzn. o dowolnych dwóch zdarzeniach, zachodzących w jego sąsiedztwie, może powiedzieć, które z nich jest wcześniejsze, a które później. Innymi słowy każdy obserwator posiada zegar, czyli urządzenie „przyporządkowujące liczbom rzeczywistym zdarzenia występujące w jego doświadczeniu” ([5], s. 25).

Pomiar przestrzeni jest pochodny w stosunku do pomiarów czasu. Odsłojność mierzy się metodą radarową. Odsłojność między obserwatorem O a zdarzeniem A jest równa połowie czasu, jaki promień światła, wysłany przez O, musi zużyć, aby po odbiciu od A powrócić do O. Trzeba przy tym założyć, że prędkość światła jest stała. Mimo wszelkich zastrzeżeń Milne’a, założenie to, w sposób ewidentny, jest zapożyczone od teorii względności.

Wszystkie opisane dotychczas pomiary mają charakter czysto lokalny, tzn. operacje pomiarowe wykonuje poszczególny obserwator w swoim najbliższym otoczeniu. Powstaje pytanie, czy pomiary czasu, dokonywane przez obserwatorów odległych od siebie, mogą zostać tak zsynchronizowane, by był sens mówić o czasie uniwersalnym (kosmicznym), płynącym wszędzie jednakowo. Okazuje się, że czasów takich może być nawet wiele, ale tylko dwa spośród nich są ważne dla dalszego rozwoju teorii. Ponieważ, zgodnie z receptą na pomiar odsłojności, każda zmiana czasu powoduje automatycznie przeskalowanie wszystkich odległości, obserwatorzy używający różnych czasów będą się różnie poruszać względem siebie. Pierwszy wyższy czas Milne’a tzw. czas t, to czas, w którym obserwatorzy spoczywają względem siebie; drugi wyróżniony czas — czas t — to czas, w którym obserwatorzy poruszają się względem siebie jednostajnie.

Milne’owi udało się wyprowadzić ze swoich kosmologicznych postulatów (plus pewne dodatkowe założenia) lokalną elektrodynamikę Maxwella i lokalną mechaniku Newtona; pierwsza wynika z teorii Milne’a używającej czasu t, druga z teorii Milne’a używającej czasu t. Stąd t nazywa się czasem elektromagnetycznym lub atomowym (zegary atomowe zbudowane są w oparciu o oddziaływania elektromagnetyczne), a τ czasem dynamicznym lub grawitacyjnym.
Analizę pomiarów czasowych do dziś uważa się za jedno z największych osiągnięć teorii Milne’a. Tak na przykład Bondi przy okazji omawiania teorii Milne’a pisze: „Ponieważ jednak nie da się porównać odcinków czasu z dwu różnych epok, przez umieszczenie ich jednego przy drugim, więc bez przeprowadzenia dalszej analizy nie możemy mówić o «jednostajnym przebiegu czasu», lub o «stałym, prawidłowo chodzącym zegarze». Dlatego absolutnie nie jest oczywiste, że różne zegary fizyczne, np. zegar atomowy i zegar dynamiczny, powinny mieć ten sam stosunek okresów dla wszystkich czasów. Nasze doświadczenie nie może wykluczyć niewielkiej zmiany liczby oscylacji linii H w ciągu jednego dnia. Tak więc każde zjawisko przyrody ma swój osobny sposób liczenia czasu” ([14], s. 164). Sam Milne z naciskiem podkreśla, że „współczesna fizyka jest skażona niejasnością, ponieważ miesza ona zmienne czasowe używane w dwu odmiennych dziedzinach badań” ([14], s. 50).

4. Dwa opisy Wszechświata

Kosmologia traktuje Wszechświat jako jeden układ, w pewnym sensie jako „jedno zjawisko”. Jeżeli zatem „każde zjawisko ma swój własny czas”, to możemy zapytać, w jakim czasie najlepiej opisywać Wszechświat jako całość. Rzecz w tym, że można to robić zarówno w czasie t, jak i w czasie τ. Według teorii Milne’a obydwa te czasy są związane ze sobą zależnością logarytmiczną, jak to przedstawiono na rysunku obok. Przyjrzmy się temu rysunkowi nieco dokładniej. W chwili obecnej, zaznaczonej na wykresie jako t_0, jednostki czasu t i czasu τ są prawie równej długości*, lecz gdy cofamy się wstecz, zegar τ idzie coraz wolniej w stosunku do zegara t. Gdy czas t dąży do zera, czas τ dąży do minus nieskończoności.

W kosmologii Milne’a istnieją zatem dwa opisy Wszechświata. Opis w czasie t przedstawia Wszechświat rozszerzający się poczynając od pierwotnej osobliwości, która zaistniała w chwili $t = 0$. Zgodnie z filozofią Milne’a nie rozszerza się przestrzeń, lecz tylko ekspanduje układ galaktyk zajmujący coraz to nowe obszary w pustej, nieskończonej przestrzeni. Uciekające galaktyki spełniają dokładnie prawo Hubble’a $v = Hr$,

* Ściśle rzecz biorąc t i τ, według Milne’a są związane zależnością: $\tau = t_0 \ln (t/t_0) + t_0$, gdy $t = t_0$, czas τ równa się dokładnie czasowi t.
każdy obserwator widzi przesunięcie ku czerwieni w widmach galaktycznych.

Opis w czasie \(\tau \) przedstawia Wszechświat jako układ statyczny, nie rozszerzający się, trwający odwiecznie, bez początku. Jednakże posługując się tym opisem, każdy obserwator również może wyznaczyć przesunięcie ku czerwieni w widmach galaktyk. Wynik obserwacji — przesunięcie ku czerwieni — nie zależy od opisu, zależnie od przyjętego opisu zmianie ulega tylko interpretacja. Obserwator używający czas \(\tau \) interpretuje przesunięcie ku czerwieni nie jako efekt Dopplera będący następczem ucieczki galaktyk, lecz jako rezultat odmiennych rytmów dynamicznego zegara \(\tau \) i atomowego zegara \(t \). Mechanizm powstawania linii widmowych jest mechanizmem atomowym, czasem właściwym dla niego jest atomowy czas \(t \).

Obserwator natomiast posługuje się czasem dynamicznym \(\tau \). Różnica w tempie upływu tych czasów produkuje obserwowane przesunięcie ku czerwieni.

Sam Milne, kierując się raczej własnymi upodobaniami niż racjami fizycznymi, za bardziej podstawowy uważał opis świata w czasie \(t \).
5. Epilog

Przypisy

Mówienie w gronie miłośników astronomii o wyjątkowej roli tej nauki wśród dyscyplin przyrodniczych może być traktowane jako nietakt. Ośmielając się jednak rozpocząć od przypomnienia tego truizmu chciałbym zwrócić uwagę na mało moŜe istotny ale charakterystyczny szczegół odróżniający astronomię od chemii, fiziów czy teŜ matematyki. Wiedza o Wszechświecie, jak Ŝadna inna, przyciąga liczne rzesze dobrze zorganizowanych i aktywnie uczestniczących w jej Ŝyciu amatorów. Jest to zjawisko powszechne w czasie i przestrzeni, niestety od kręgów kulturowych oraz stopnia rozwoju cywilizacyjnego.

Astronomię profesjonalnie uprawia dziś na świecie kilka tysięcy osób. Do tego wniosku łatwo dojść zważyszys, Ŝe Międzynarodowa Unia Astronomiczna zrzesza obecnie około 3800 astronomów zawodowych. Natomiast znacznie trudniej jest ocenić liczebność miłośników astronomii. Międzynarodowa Unia Miłośników Astronomii nie ma niestety tej rangi wśród amatorów co Międzynarodowa Unia Astronomiczna wśród profesjonalistów i zresza niewielki tylko procent ludzi aktywnie interesujących się astronomią. Pewne wyobraŜenie o ilości uczestników miłośniczego ruchu astronomicznego na świecie moŜe jednak dać Ŝóba oceny ilości czytelników najbardziej rozpoznanionych i znanych popularnych czasopism astronomicznych o zasięgu międzynarodowym. NaleŜą do nich niewątpliwie amerykański miesięcznik „Sky and Telescope” od lat posiadający renomę najlepszego popularnego magazynu astronomicznego, a takŜe radziecki dwumiesięcznik „Ziemia i Wsielennaja” dobrze znany w krajach obozu socjalistycznego. Biorąc pod uwagę, Ŝe nakłady tych pism wynoszą odpowiednio około 75 tys. i 50 tys. oraz przyjmując (co zresztą bardzo trudno było uzasadnić), Ŝe co czwarty miłośnik astronomii jest sta-
łym czytelnikiem conajmniej jednego z nich, dochodzimy do liczby pół miliona, która w wielkim przybliżeniu ukazuje masowość miłośnictwa astronomii.

Formy organizacyjne ruchu amatorskiego są bardzo różne i nie da się chyba wskazać najbardziej typowej lub najczęściej występującej. Przykładem dużej, scentralizowanej organizacji obejmującej zasięgiem działania cały kraj jest nasze Polskie Towarzystwo Miłośników Astronomii posiadające około 2500 członków działających w 26 oddziałach terenowych i 5 sekcjach problemowych. Podobnie zorganizowani są np. miłośnicy astronomii w Wielkiej Brytanii, gdzie istniejące od 1890 roku Brytyjskie Towarzystwo Astronomiczne (British Astronomical Association) zrzesza około 5000 osób, z tym jednak, że główna aktywność członków koncentruje się w sekcjach tematycznych, których jest znacznie więcej niż w PTMA. Również ruch miłośniczy w Związku Radzieckim skupiony jest w jednym dużym stowarzyszeniu tzw. VAGO (Vsiesoozjuznoje astronomo-gieò-dieczeskoje obszczestwo). Powstało ono w 1934 roku, a obecnie liczy około 7300 członków skupionych w 68 oddziałach. Zdumiewająca jest popularność miłośnictwa astronomii na Węgrzech. Istniejące tam od 1964 roku towarzystwo legitymuje się obecnie 10 000 członków, którzy dysponują imponującym sprzętem obserwacyjnym: około 20 000 małych lunetek i 1500 newtonowskich reflektorów.

Inną równie częstą formą organizacji amatorów są luźne kluby lub niewielkie towarzystwa często zrzeszone w jakieś lidze terytorialnej lub federacji krajowej, a czasem nawet w kilku bliskich sobie państw. Z taką sytuacją spotykamy się w Stanach Zjednoczonych gdzie np. około 200 klubów ze wschodnich stanów zrzeszonych jest w Lidze Astronomicznej (Astronomical League). Członkami Ligi są nie tylko kluby astronomiczne ale również np. planetaria, których w USA jest około 1000 (o średnicach powyżej 4 m). 34 niezależne towarzystwa miłośników astronomii we Włoszech tworzą unię (Unione Astrofilji Italiani), stanowiącą płaszczyznę porozumienia, wymiany doświadczeń, wzajemnych kontaktów. Mówiąc o włoskich organizacjach warto przypomnieć, że jedna z nich, Towarzystwo Miłośników Astronomii w Bolonii (Associazione Astrofilji Bolognesi), było organizatorem i gospodarzem pierwszego założycielskiego kongresu Międzynarodowej Unii Miłośników Astronomii w 1969 roku. Jeszcze jednym przykładem może być Skandynawska Unia Astronomów Amatorów, do której należy m. in. 14 organizacji z Finlandii i 16 towarzystw ze Szwecji,
a wśród nich Towarzystwo Astronomiczno-Astronautyczne w Malmö (Malmö Astronomi och Rymdfartssällskap), które było organizatorem i gospodarzem II kongresu Międzynarodowej Unii Miłośników Astronomii w 1972 roku. Warto może również zasygnować, że 10-cio milionowa Belgia posiada mniej więcej tylu miłośników astronomii co Polska, ale zrzeszeni są oni w 9 niezależnych organizacjach, których działalność koordynuje Belgijski Komitet Astronomów Amatorów. W Belgii istnieje ponadto 150 prywatnych obserwatoriów astronomicznych z instrumentami o średnicach od 60 do 600 mm.

Jeszcze inaczej zorganizowali swą działalność miłośnicy astronomii np. w Czechosłowacji i w Bułgarii. Jest ona skoncentrowana w zasadzie wokół ludowych obserwatoriów astronomicznych i planetariów, których u naszych południowych sąsiadów jest 60, a w Bułgarii 7. Trzeba jeszcze również wspomnieć o licznych chyba na całym świecie szkolnych kółkach astronomicznych, a także sekcjach odpowiednich zainteresowań w organizacjach młodzieżowych, stowarzyszeniach regionalnych, czy też instytucjach typu naszego „domu kultury”.

Tyle o organizacji amatorskiego ruchu astronomicznego na świecie. Przejdźmy teraz do omówienia głównych form działalności miłośników astronomii. Aby je jakoś sklasyfikować przytoczę słowa prezesa Oddziału Warszawskiego PTMA Z. Greli, który często podkreśla, że kierując pracą oddziału stara się ją opierać na trzech fundamentach: obserwacjach dających bezpośredni kontakt z niebem, konstrukcji instrumentów dla umożliwienia prowadzenia obserwacji i upowszechniania wiedzy astronomicznej drogą odczytów, seminariów i organizacją biblioteki. Analogicznie podzielił miłośników astronomii wiceprezydent Międzynarodowej Unii Miłośników Astronomii i czło-
nek redakcji wspomnianego już miesięcznika amerykańskiego „Sky and Telescope” N. Sperling. Według niego amatorzy to albo obserwatorzy, albo konstruktorzy instrumentów, albo astronomowie „fotelowi”, jak żartobliwie określił tych, którzy w swej działalności nie wychodzą poza uczestnictwo w odczytach, czytanie czasopism i książek, czy też oglądanie astroonomicznych audycji telewizyjnych lub nieba pod kopułą planetarium.

Przyjmując w dalszych rozważaniach ten podział dwóch doświadczonych działaczy miłośniczego ruchu astronomicznego, zastanówmy się najpierw, co amatorzy obserwują. Tradycyjną domeną obserwacji miłośniczych są gwiazdy zmienne, plamy na Słońcu, meteory, zaćmienia Słońca i Księżyca. Nie warto o tym szczegółowo mówić, bo są to sprawy dobrze znane polscy miłośnicy astronomii mają w tych dziedzinach wiele osiągnięć do odnotowania. Warto może jedynie zwrócić uwagę na znaczenie i korzyści naukowe, jakie pociąga za sobą dobra organizacja i koordynacja pracy wielu zespołów obserwatorów. Wśród przykładów nie sposób nie wymienić polskich obserwacji aktywności plamotwórczej Słońca, a także czesko-słowackiej sieci fotograficznych obserwacji jasnych meteorów czy też licznych ekspedycji badawczych radzieckich miłośników na teren spadku meteorytu tunguskiego. Nieco mniej popularne choćże równie atrakcyjne wydają się obserwacje zakryć gwiazd przez Księżyca, planety i planetoidy, obserwacje komet, a przede wszystkim poszukiwanie nowych (szeroko znane są sukcesy japońskich amatorów w tym zakresie), śledzenie ruchów planetoid, komet, naturalnych satelitów planet i sztucznych obiektów kosmicznych. Do ciekawszych (choć wymagających większych instrumentów) obserwacji można zaliczyć stałe patrowanie powierzchni planet. Ostatnio np. miłośnicy astronomii na całym świecie zostali zaproszeni do udziału w programie kosmicznym Voyager dla wnikliwego śledzenia powierzchni i najbliższego otoczenia Jowisza w okresie przelotu w pobliżu tej planety dwóch sond kosmicznych. Bardzo popularną, głównie w bogatych krajach zachodnich, formą miłośniczych obserwacji nieba jest jego fotografowanie. Rejestruje się w ten sposób np. bliskie złączenia Księżyca i planet, oryginalne konfiguracje planet i jasnych gwiazd, porze polarne, obłoki srebrzyste i wiele innych ciekawostek nocnego nieba. Ta forma działalności amatorów najlepiej chyba dowodzi, że nadrzędnym celem obserwacji miłośniczych nie jest wartość naukowa uzyskanego materiału — choć naturalnie daleki jestem od negowania tego
ich aspektu — ale przede wszystkim satysfakcja, przyjemność, wyżycie się. Warto aby działacze PTMA o tym pamiętali.

I wreszcie trzecie, ostatnie już zagadnienie, to upowszech-nianie i popularyzacja astronomii. I tu również nie warto długo zatrzymywać się nad znanymi i na całym świecie stosowanymi formami typu odczyt, dyskusja, seminarium, audycja radiowa czy telewizyjna. Warto natomiast podkreślić atrakcyjność i walor dydaktyczny takich imprez jak olimpiady, konkursy czy quizy. Ważną rolę w tym zakresie pełnią również wystawy, wycieczki do obserwatoriów, obozy szkoleniowe, ekspedycje obserwacyjne. Kształcącą i dość rozpowszechnioną formą jest zbieractwo znaczków pocztowych o tematyce astronomicznej. A już niemal każdy miłośnik astronomii kompletuje księgozbiór wydawnictw dotyczących interesujących go zagadnień, rzadziej w ogóle wszystkich publikacji astronomicznych. Ciekawe, że miłośnictwo astronomii bardzo często idzie w parze z bibliofilstwem.

Miłośnicy astronomii lubią pisać. Pasja ta niejednokrotnie prowadzi do wykształcenia się prawdziwych talentów popularyzatorskich, czego przykłady nie trudno i w Polsce znaleźć. Spod pióra amatorów wychodzą wiele kalendarzy astronomicznych, poradników dla obserwatorów, map i atlasów nieba. I mówiąc o wydawnictwach chciałbym zakończyć ten oczywiście daleki od kompletności przegląd zachętą do obejrzenia reprodukowanych na okładce niniejszego numeru „Uranii” róż-
nych czasopism i publikacji miłośników astronomii w różnych krajach. Pamiętać bowiem warto, że to one właśnie są najczęściej najlepszym wykładnikiem aktywności i wartości miłośniczego ruchu astronomicznego.

KRONIKA

Czyżby rozwiązanie zagadki „tunguzkiego meteorytu”?

Na temat „tunguzkiego meteorytu” powstało dziesiątki najprzeróżniejszych hipotez. Dla amatorów sensacji jest on bowiem tak samo atrakcyjny, jak zagłada mitycznej Atlantydy, latające talerze (UFO), himalajski człowiek śnieżny Yeti lub przesławny „trójkąt bermudzki”. Większość z tych hipotez należy do gatunku „science fiction” i stanowi odwzorowanie „modnych” aktualnie osiągnięć nauki i techniki. Nie brak wśród nich prawdziwych kuriozów, bo trudno mówić inaczej o hipotezach usiłujących tunguzką katastrofę tłumaczyć wybuchem tajnej wytwórni szczucznych惦diamentów, zstąpieniem na Ziemię aniola z ognistym mieczem, czy też atomową awarię statku z nieznanego planety. Inne dla omdiany widzą w tym skutek zderzenia Ziemi z bryłą antymaterii, promieni laseru skierowanego na tajgę przez mieszkańców planety obiegającej 61 Cygni lub spotkanie naszego globu z miniaturową „czarną dziurą”, która przebiła go na wylot i kontynuuje swój niewidzialny żywot w przestrzeni kosmicznej.

Kuleczki takie występują na całej Ziemi, ale w miejscach spadku większych brył meteorytowych jest ich znacznie więcej (przykładem może być okolica Morasko pod Poznaniem). Stwierdzono to również w epicentrum wybuchu „tunguzkiego meteorytu”, gdzie kuleczki stopionej krzemionki są wyjątkowo duże, zwłaszcza w pokładach odłożonych przed siedemdziesięciu laty torfu. Są one zapewne częściami jakiegoś nietrwałego ciała kosmicznego, które swym składem chemicznym i strukturą nie przypomina normalnych meteorytów. Mogło
nim być — jak sądził zmarły przed kilku laty astrofizyk radziecki Wasilij G. Fiesenkow — jądro niewielkiej komety. Ciała te utworzone są głównie z lodu, toteż przy każdym zbliżeniu do Słońca topią się i parują, w końcu rozpadają na tysiące drobnych cząstek. Kometa przestaje istnieć, lecz za to w przestrzeni międzyplanetarnej pojawia się nowy rój meteoroidów.

Tunguzką katastrofę nie musiał spowodować upadek całego jądra komety. Wystarczyło w zupełności, by to był jakiś większy jej fragment. To zaś jest całkowicie możliwe, bo przecież niekiedy kometa przed końcem rozpadu dzieli się na dwie lub więcej części. Za przykład mogą służyć chociażby komety Bieli, Taylora (1916 I) i Ikeya-Seki (1965 f), które rozpadły się niemal na oczach astronomów. A zatem w roku 1908 mógł na Wyżynę Środkowosyberyjską spaść fragment istniejącej do dziś komety i może nawet, uda się ją zidentyfikować? Tego niełatwego zadania podjął się niedawno astronom słowacki Lubor Kresák, opierając się na materiale opublikowanym w roku 1966 przez moskiewskiego astronoma I. T. Zotkina. A z nich wynika, iż obiekt odpowiedzialny za tunguzką katastrofę wpadł do ziemskiej atmosfery mniej więcej w tym samym punkcie nieba, z którego każdego roku wylatują meteority roju β Taurydy. Jest to bardzo aktywny rój, odkryty jednak dopiero w roku 1947 za pomocą radaru. Należących bowiem do niego meteorytów nie można obserwować optycznie, gdyż — podobnie jak „meteoryt tunguzki” — wpadają do atmosfery podczas dnia. Są one produktem
rozpadu komety Enckego, która — zdaniem Kresáka — może być po-
średnio odpowiedzialna za spowodowanie tunguzskiej katastrofy.

Do powyższego wniosku Kresák doszedł na podstawie analizy torów
meteorytów należących do roju β Taurydy oraz danych o kierunku ru-
chu „tunguzskiego meteorytu”. Stwierdził ponadto, że czas jego upadku
zgadza się zarówno z okresem największej aktywności wspomnianego
roju meteorytów, jak i z czasem maksymalnego zbliżenia się Ziemi do
orbyty komety Enckego. Kometa ta została odkryta w roku 1818 przez
francuskiego astronoma Jean'a L. Ponsa, lecz nosi nazwisko astronoma
niemieckiego Johanna F. Enckego, ponieważ to on pierwszy obliczył ele-
menty jej orbity i udowodnił, że przed odkryciem obserwowano ją kil-
kakrotnie (w latach 1786, 1795 i 1805). W przeszłości była ona przypu-
szczalnie okazałym obiektem, ale ze wszystkich znanych komet okreso-
wych najczęściej i najbardziej zbliża się do Słońca, toteż towarzyszy jej
już okazały rój meteoroidów.

Taurydy to młody, lecz bardzo już rozległy rój meteoroidów. Jest
on aktywny zarówno na przełomie czerwca i lipca (dzieńowy rój β Tau-
rydy), jak i w okresie od połowy października do końca listopada (noc-
ny rój Taurydy Południowe i Północne). Powstał zaś — jak twierdzą
Fred L. Whipple i S. E. Hamid — na skutek zderzenia komety Enckego
z jakąś planetoidą. Na podstawie bogatego materiału obserwacyjnego
doszli oni do przekonania, że nastąpiło to około 4700 lat temu, kiedy to
powstała główna część roju w wyniku gwałtownego oderwania się ma-
terii od jądra komety. Do kolejnego rozpadu doszło około 1400 lat temu,
ale tym razem dotyczyło to raczej obiektu, który jedynie poruszał się
po tej samej co kometa Enckego orbicie. Najprawdopodobniej był to je-
den z większych fragmentów, oderwanych od niej przed trzema tysią-
cami lat. Drugi mógł nadal poruszać się po pierwotnej orbicie i dopiero
w roku 1908 na skutek perturbacji wywołanej przez naszą planetę zbo-
czył ze swej trasy. Jego to właśnie spadek obserwowano przed siedem-
dziesięciu laty nad Wyżyną Środkowośiberyjską.

Obiekt odpowiedzialny za tunguzską katastrofę wpadł do ziemskiej
atmosfery z szybkością około 31 km/s. Początkowo miał około 100 m
średnicy, lecz już na wysokości około 100 km rozpadł się na mniejsze
części, a końcowy wybuch nastąpił gdzieś 5–7 km nad tajgą. Główna
jego część rozpyliła się w atmosferze, na Ziemię zaś spadły jedynie mi-
kroskopijne cząstki stopionej krzemionki. Byłyby one — gdyby hipoteza
Kresáka się potwierdziła — drugimi obok próbek gruntu Księżycowego
cząstkami pozaziemskiej materii, której pochodzenie jest nam znane.

Wg Kozmos, 1978, vol. 9, 163.

S. R. BRZOSTKIEWICZ

Czy w galaktykach eliptycznych powstają gwiazdy?

Do niedawna popularny był pogląd, że w galaktykach eliptycznych
gwiazdy nie mogą powstawać, ponieważ zupełnie nie występuje w nich
materia międzygwiazdowa. Hipotezę powyższą w jakimś stopniu zdawał
się potwierdzać brak w tego typu galaktykach obiektów „młodych”, ja-
kimi są na przykład niebieskie gwiazdy wczesnych klas widmowych.
Dziś jednak już wiadomo, że i w eliptycznych galaktykach występuje
zarówno pewna ilość gazu, jak i pyłu międzygwiazdowego. W związku
z tym astronom amerykański M. Jura zastanawia się nawet, czy i ewen-
tualnie jaki to może mieć wpływ na tworzenie się nowych gwiazd. Po-
nieważ w galaktykach eliptycznych brak gwiazd typu widmowego O i B,
materia międzygwiazdowa jest w nich słabiej ogrzewana niż w naszej
Galaktyce i powinna znajdować się w molekularnym stanie. Na skutek
tego — jak sądzi Jura — mogą się tam tworzyć obłoki molekularnego
wodoru jedynie o masie nie przekraczającej 10 mas Słońca, które póź-
niej winny się rozpadać na mało masywne protogwiazdy. To prawdopo-
dobnie jest głównym powodem, że w galaktykach eliptycznych nie ob-
serwujemy gwiazd gorących typu widmowego O i B.

S. R. BRZOSTKIEWICZ

OBSEWACJE

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 1/79

Dalszy znaczny wzrost plamotwórczej aktywności Słońca. Średnia mie-
sięczna względna liczba Wolfa (month mean Wolf Number) za miesiąc

styczeń 1979 r. R = 145,3

W styczniku na widocznej tarczy Słońca zaobserwowano powstanie
30 nowych grup plam słonecznych. Nowopowstałe grupy były przeważy-
nie średniej wielkości. Szacunkowa średnia miesięczna powierzchnia
plam (month mean Area of Sunspots) za miesiąc

styczeń 1979 r. S = 1917 • 10^{-6}p.p.s.

Dziennie liczby plamowe (Daily Wolf Numbers) w styczniu 1979 r.:
—, 123, 141, 145, 126, 159, 167, 166, —, 131, 108, 139, 129, —, —, —, 118,
163, 139, 178, 197, —, 185, —, 171, 166, 154, 114, —, —, 135.

Wykorzystano: 107 obserwacji 20 obserwatorów w WW dniach ob-
serwacyjnych. Obserwatorzy:

J. Brylski, R. Biernikowicz, T. Kalinowski, Z. Kieć, A. Lazar, D.
Lis, L. Materniak, R. Rümler, Z. Rzepka, M. Siemieniako, Z. Skorzew-
ski, B. Szewczyk, M. Szulc, J. Szuber, Ł. Szymańska, W. Szymański,

Dąbrowa Górnicza, 7 lutego 1979 r.

WACŁAW SZYMAŃSKI

Wiadomości: Wśród naszych obserwatorów Słońca serdecznie witamy
Pana Thomasa Weilandę z Wiednia, doświadczonego Obserwatora Słoń-
ca, kierownika-referenta wiedeńskiej grupy słoneczników. Spodziewamy
się, że nasza współpraca przyniesie wiele pożytecznych osiągnięć w dzie-
dzinie badań zmian plamotwórczej aktywności Słońca.

Wir grüssen P. T. Kollegen Sonnenbeobachter in Österreich!
Srednie strumienie miesiąca: 6,9 (127 MHz, 27 dni obserwacji) i 215,6 su (2800 MHz, 23 dni). Średnia miesięczna wskaźników zmienności — 0,41.

Podobnie jak w poprzednich kilku miesiącach obserwujemy stosunkowo wysoką aktywność Słońca radiowego. Nie wystąpiło wprawdzie zbyt dużo wielkich wybuchów, ale za to przez cały niemal miesiąc poziom składowej ciągłej na częstotliwości 2800 MHz przekraczał 200 su zaś na 127 MHz stwierdzono 30 wybuchów (w tym 18 burz szumowych). Z tych trzydziestu najwyższy poziom osiągnął wybuch typu 47GB z dnia 29 I (maksimum o godz. 1148,5 UT) — 1200 su, lecz trwał krótko (1 min.). Na częstotliwości 2800 MHz opracowano 5 wybuchów, z których największy był wybuch prosty z dnia 15 I (maksimum o godz. 1102 UT na poziomie 113 su).

Od 7 I, wskutek awarii systemu rejestracji i częściowo systemu odbiorczego, na częstotliwości 127 MHz obserwacje zapisywane są tylko na jednym samopisie przy stałej czasowej integracji sygnału 2 s (dotychczas — 0,5 i 5,3 s).

Toruń, 9 lutego 1979 r.

H. WEŁNOWSKI, K. M. BOŘKOWSKI

Działalność Centralnej Sekcji Obserwatorów Słońca w 1978 r.

Dla niektórych osób obserwacje Słońca były zbyt uciążliwe: nie wystarcza bowiem (jak to czyniliśmy w ubiegłych latach) podać tylko ilość zaobserwowanych grup i ilość zaobserwowanych w tych grupach plam. Pełnowartościowa obserwacja Słońca, nadająca się do opracowania polskich liczb planowych, powinna być udokumentowana szkicem obserwacyjnym, na którym na właściwie zorientowanej tarczy Słońca należy wskazać miejsca, w których grupy plam zostały zaobserwowane. Grupy powinny być odpowiednio ponumerowane, a zestawie-
nie obserwacji sporządzone na jednolitym druku i wysłane natychmiast po zakończeniu miesiąca. Spóźnione obserwacje nie mogą być wykorzystane i stają się bezużyteczne.

Dla uzasadnienia tych wymagań i dla dodania otuchy systematycznym i wytrwałym obserwatorem, prowadzącym te dość uciążliwe obserwacje Słońca, wyrażamy tu przekonanie, że w ten sposób prowadzimy dobrą robotę. Wykonujemy pracę astronomiczną, wyniki jej uznawane są w kraju i zagranicą. Z naszych obserwacji, po ich odpowiednim opracowaniu, publikujemy już nie zuryckie liczby Wolfa, lecz polskie liczby plamowe niezależne od zuryckich. Podajemy je już w kilka dni po zakończeniu miesiąca. Są one publikowane nie tylko w „Uranii”, lecz również i zagranicą, jako Polskie Liczby Plamowe, na równi z liczbami zuryckimi, amerykańskimi i niemieckimi.

W 1978 r. rozpoczęło przysyłanie obserwacji Słońca 12 nowych obserwatorów. W sumie więc w ub. roku liczba obserwatorów nadsyłających obserwacje do Centrali w Dąbrowie Górniczej wzrosła do 35 osób (w 1977 r. — 33 osoby). Nazwiska ich wymienione są w poniższym zestawieniu:

1. Jan Brylski
2. Ryszard Biernikowicz
3. Tadeusz Kalinowski
4. Zbigniew Kieć
5. Alojzy Lazar
6. Tomasz Liszka
7. Ryszard Miglus
8. Frank Rümmler
9. Zbigniew Rzepeka
10. Michał Siemieniako
11. Bronisław Szewczyk
12. Mieczysław Szulc
13. Łucja Szymańska
14. Wacław Szymański
15. Jerzy Ulanowicz
16. Piotr Urbanski
17. Władysław Zbłowski
18. Stanisław Zagiels
19. Jarosław Buczek
20. Sławomir Buczek
21. Dariusz Cupiał
22. Stanisław Dotko
23. Eugeniusz Janusz
24. Józef Karaś
25. Janusz Kazimierowski
26. Leszek Kowalczyk
27. Dariusz Lis
28. Jerzy Łagiewka
29. Lesław Materiał
30. Paul Pakla
31. Janusz Siwy
32. Zenon Skorzewski
33. Jan Sztajnykier
34. Jacek Szuber
35. Norbert Witek

— Żarki–Letnisko
— Radowo Małe
— Myślenice
— Dąbrowa Górnicza
— Tarnowskie Góry
— Bolesław
— Dąbrowa Górnicza
— Nessa (NRD)
— Poznań
— Dąbrowa Górnicza
— Katowice
— Tuchola
— Dąbrowa Górnicza
— Dąbrowa Górnicza
— Ostrowiec Świętokrzyski
— Żychlin
— Boblice
— Głogów
— Grudziądz
— Grudziądz
— Żarki–Letnisko
— Dąbrowa Górnicza
— Dąbrowa Górnicza
— Żarki–Letnisko
— Kalisz
— Komorów
— Żarki–Letnisko
— Wiłkowice
— Rymanów
— Tallin (ZSRR)
— Gliwice
— Poznań
— Łódź
— Katowice
— Katowice
W poz. 1–18 wymienieni są obserwatorzy przysyłający systematycznie pełnowartościowe obserwacje Słońca. Pozostali (poz. 19–35) bądź niedawno rozpoczęli obserwacje, bądź przysyłają je tylko sporadycznie i w niewielkich ilościach.

Obserwacje Słońca otrzymywaliśmy również od osób z zagranicy. Z nich — obserwacje Franka Rümblera (NRD) oraz Paula Paikla (Tallinn, ZSRR) włączone zostały do opracowań zbiorczych.

Ogólnie opracowano 12 miesięcznych komunikatów, które w ilości ok. 800 egzemplarzy rozsyłano do instytucji, redakcji, obserwatorów Słońca i osób zainteresowanych w kraju i zagranicą. Utrzymywaliśmy kontakt z kilkoma ośrodkami zagranicznymi:

- Astronomische Arbeitsgemeinschaft — Paderborn (RFN) — Reinhard Wiechczek,
- Wilhelm Foerster Sternwarte — Berlin — Peter Völker,
- Astronomischer Jugendklub — Wien (Austria) — Peter Reinhardt,
- Tallinna Tahetorn — Tallinn (Est. S.R.R.) — Peep Kalv; a także z periodykami:

Miesięcznikiem „S a t u r n ” — Paderborn (RFN), kwartalnikiem „S o n n e ” — Berlin, dwumiesięcznikiem „D i e S t e r n e r u n d s c h a u ” — Wiedeń (Austria).

Z tymi ośrodkami staramy się organizować ścieśniejszą współpracę w dziedzinie obserwacji plam słonecznych. Otrzymywaliśmy również „T a r t u T a h e t o r n i K a l e n d e r ” — Estońska S.R.R.

Aktywność plamotwórcza Słońca w 1978 r. gwałtownie się zwiększyła. Średnia roczna względna liczba plamowa za rok 1978 wzrosła ponad trzykrotnie i wyniosła

\[\bar{R}_{1978} = 92,1 \]

Najmniejsza średnia miesięczna wypadła w styczniu \[R_i = 47,0 \] największa zaś we wrześniu — \[R_{IX} = 133,6 \].

Średnia roczna powierzchnia plam w 1978 r. wyniosła

\[S_{1978} = 1027 \cdot 10^{-6} \text{ p.p.s.} \]

a więc również wykazała ponad trzykrotny wzrost w stosunku do roku poprzedniego (\[S_{1977} = 299 \cdot 10^{-6} \]).
Dotychczasowy przebieg aktywności w 21 cyklu dobrze jest widoczny na załączonym wykresie średnich kwartalnych względnych liczb plamowych, który eliminuje przypadkowe wahania średnich miesięcznych.

Dla scharakteryzowania szybkości wzrostu plamotwórczej aktywności w bieżącym cyklu może służyć poniższe zestawienie:

O wysokości przebiegu 21 cyklu świadczyć mogą maksymalne szerokości heliograficzne obserwowanych grup. Otóż w ciągu 1978 r. odnotowaliśmy 5 grup o szerokościach $F \geq 39^\circ$, kolejno: 39°, 42°, 39°, 44°, 43°. W 1977 r. takich grup zaobserwowaliśmy tylko trzy: 40°, 39°, 40°. W poprzednim cyklu 20, poczynając od drugiego roku grup o szerokościach $F \geq 39^\circ$ w ogóle nie zaobserwowaliśmy. Można więc oczekiwać w 1979 r. ukazywania się dalszych grup na wysokościach $F \geq 39^\circ$, co potwierdzi rychłe nadejście wysokiego maksimum.

Chciałbym zachęcić osoby posiadające niewielkie lunety astronomiczne — refraktory o średnicy 60 do 65 mm i ogniskowej od 700 do 1000 m lub reaktery o średnicy 100 do 150 mm — do zajęcia się obserwacjami plam słonecznych; do zajęcia się systematycznymi, poważnymi obserwacjami, ze sporządzaniem szkiców obserwacyjnych i odpowiednim zestawieniem sporządzonym na drukowanym formularzu. Nakładam od obserwacji Słońca na wysokim poziomie, nadających się do zbiorczego opracowania polskich liczb Wolfa.
Obserwacje Słońca prowadzone i notowane naszym systemem są może nieco uciążliwe, lecz są bardzo ciekawe i dają dużo satysfakcji, że prowadzi się pracę astronomiczną, której wyniki mają wartość naukową i nadają się do wykorzystania w teoretycznych pracach naukowych.

Wszystkim obserwatorom Słońca w Kraju i zagranicą przesyłającym swoje obserwacje do opracowania serdecznie dziękuję za współpracę.

WACŁAW SZYMAŃSKI

Obserwacja jasnego bolidu w dniu 29 sierpnia 1978 r.

Opisu rzadkiego zjawiska przechodu dziennego bolidu, tj. bolidu o jasności większej niż —8m, takiego więc, który mógł być widoczny w dzień — dostarczył nam miłośnik astronomii p. Vladimir Wagner z Havirow (CSSR).

Dnia 29 VIII 1978 r. o 21h48m56s ± 3s TU trzech obserwatorów ze szkolnego Kółka Astronomicznego przy gimnazjum w Havirowie — A. Slatinsky, V. Toman i V. Wagner — zaobserwowało z amatorskiej dostrzegalni w Horni Bludovici (φ = 49°44'8", λ = —18°26'9") przechodzenie bolidu o jasności —9m. Bolid „zapalił się” w gwiazdozbiorze Andromedy (α = 0h55m, δ = 40°30''), przeleciał przez Trójkąt i Barana, i zgasł w gwiazdozbiorze Byka (α = 3h18m, δ = 16°50''). Prędkość, według stopniowej skali prędkości, wynosiła w początkowej fazie lotu 2, pod koniec — zaledwie 1 stopień. Przechód trwał 4—5 sekund. Bolid musiał być także widoczny w Polsce.

Uwaga dla „niewtajemniczonych”. Ten sam meteor, obserwowany w różnych miejscach, jest widoczny na tle innych gwiazd. Identyfikacja dwóch obserwacji polega na porównaniu czasu obserwacji, jasności i ew. barwy meteoru. W powyższym przypadku sprawą jest o tyle prosta, że bolidy o jasności —9m zdarzają się wyjątkowo rzadko.

HONORATA KORPIKIEWICZ

KONFERENCJE I ZJAZDY

IV Kongres Międzynarodowej Unii Miłośników Astronomii

W dniach od 14 do 19 sierpnia 1978 roku w Baile Átha Cliath (Irlandia) odbył się — organizowany co trzy lata — kolejny IV Kongres Międzynarodowej Unii Miłośników Astronomii (IUAA — International Union of Amateur Astronomers). Wzięło w nim udział około 100 osób z 20 kra-

Program Kongresu obejmował referaty przeglądowe dotyczące aktualnych problemów astronomicznych, komunikaty prezentujące metody i wyniki prac miłośników astronomii, informacje o działalności różnych organizacji, towarzystw, czy też obserwatoriów amatorskich, zwiedzanie ośrodków astronomicznych Irlandii. Wśród referatów prezentujących wyniki własnych prac amatorów na uwagę zasługują wystąpienia stosunkowo licznej grupy japońskich miłośników astronomii. Mówili oni nie tylko o znanej i cenionej w świecie naukowym aktywności japońskich amatorów w zakresie odkrywania i obserwacji komet ale również o ciekawych spostrzeżeniach występowania zależności pomiędzy porą roku i ilością mikrometeorytów znajdowanych w jednostce powierzchni w okresie kilkudziesięciu lat, jasnością Księżyca podczas całkowitego zaćmienia i fazą jedenaastoletniego cyklu aktywności Słońca i innych. Do ciekawszyszych można również zaliczyć wystąpienie belgijskiego amatora, który zaprezentował wyniki prowadzonych przez siebie od 1933 roku systematycznych obserwacji kształtów ciemnych mgławic w Orione, Bliźniętach i Byku. Wiele referatów było poświęconych tradycyjnej dziedzinie działalności amatorów tzn. obserwacjom gwiazd zmien­nich. Dużo mówiono o doświadczeniach w dziedzinie budowy lunet i teleskopów, a także — co wydaje się pewnym novum — radioteleskopów amatorskich. Dyskutowano problemy związane z nauczaniem, popularyzacją i upowszechnianiem astronomii. Zainteresowaniem spotkał się także referat autora niniejszego sprawozdania na temat badań kosmicznych w Polsce, w którym omówiłem nie tylko aktualną sprawę lotu pierwszego polskiego kosmonauty, ale również krótko charakterystycznie zrealizowany najważniejsze z dotychczasowych eksperymentów kosmicznych zrealizowany przez polskich naukowców w ramach programu INTERKOSMOS. Omówiłem również wyniki niektórych polskich prac teoretycznych w dziedzinie wykorzystania obserwacji sztucznych satelitów, badań górnych warstw atmosfery i przestrzeni międzyplanetarnej.

Ważnym uzupełnieniem programu Kongresu było zwiedzenie Obserwatorium Astronomicznego Uniwersytetu w Dublinie (Dunsink Observatory) oraz Obserwatorium Astronomicznego i Planetarium w Armagh w Irlandii Północnej. Oba obserwatoria dysponują obecnie niewielkimi instrumentami o znaczeniu już głównie historycznym jak np. dwunastocalowy refraktor w Dunsink, za pomocą którego opracowano słynny katalog obiektów mgławicowych NGC (New General Catalogue).

IV Kongres IUAA dokonał wyboru nowych władz Unii na najbliższą trzyletnią kadencję. Prezydentem został V. Barocas (Anglia) wiceprezydentami N. Sperling (USA) i E. Ansbro (Irlandia) oraz sekretarzami C. Kilbridge (Irlandia), P. Linde (Szwecja) i niżej podpisany.

KRZYSZTOF ZIOŁKOWSKI
Komunikat Głównej Rady Naukowej

Główna Rada Naukowa PTMA łącznie z Centralną Sekcją Obserwatorów Meteorów organizuje w dniu 12 sierpnia 1979 r. we Fromborku

I SEMINARIUM METEOROWO-METEORYTOWE

na które serdecznie zapraszamy wszystkich zainteresowanych.

Przyjazd uczestników na koszt własny. Zgłoszenia udziału należy kierować na adres Sekretarza Rady.

Szczegółowy program Seminarium podamy zainteresowanym w terminie późniejszym.

Sekretarz Głównej Rady Naukowej
Mgr HONORATA KORPIKIEWICZ
62-941 Puszczykowo, Grochowa 3

NOWOŚCI WYDAWNICZES

Bibliofilów i miłośników wydawnictw albumowych, jak również interesujących się historią instrumentów astronomicznych (w szczególności zegarów) zachęcam do nabycia tego pięknie wydanego dzieła zawierającego barwne reprodukcje zdjęć najcenniejszych eksponatów Salonu Matematyczno-Fizycznego w Dreźnie.

Jedno z najświetniejszych muzeów świata — Zwinger — liczy przeszło 400 lat. W początku XVIII w. zostało ono rozbudowane przez założenie Salonu, w którym z biegiem czasu zgromadzono liczne instrumenty naukowe, głównie zegary (słoneczne, klepsydry, mechaniczne) a także globusy Ziemi i nieba, teleskopy i inne instrumenty astronomiczne lub geodezyjne, głównie pochodzące z rąk słynnych mistrzów począwszy od XV wieku.

Omawiany album wydano w 250 rocznicę (1728—1978) otwarcia Salonu. Część tekstu zawiera historię muzeum oraz krótkie opisy prezentowanych eksponatów. Część ilustracyjna zwraca uwagę przed wszystkim niezwykłą staranną wykonania zdjęć. Przedstawiają one eksponaty w wielu przypadkach w skali naturalnej, a nawet — w powiększeniu, co umożliwia nikliwe zapoznanie się z konstrukcją, ze szczegółami ornamentów na obudowie, odczytanie nawet najdrobniejszych napisów. Ma to szczególne znaczenie dla chcących oczywiać zawisłości wskazanych w tarczach „astronomicznych”, wskazujących wschody i zachody ciał niebieskich, godziny „włoskie” lub „nie-równe”, liczbę „złotą” itp.

Parę słów należałoby poświęcić kunsztownemu zegarowi stołowemu wymienionemu w albumie jako Geographisch-Astronomische Kunsthnl pod nr 63 i 64, w drewnianej szafce bogato zdobionej złotem, m. in. koroną królewską na szczycie oraz polskim Orłem i litewską Pogonią. Wykonany był dla elektora saskiego i króla polskiego Augusta III w r. 1738. Jego twórcą był mistrz Johannes Klein z Collegium Clementinum w Pradze. Zegar był ozdobą pałacu w Dreźnie; ma mechanism sprężynowy, wychwyty szpindlowy, wskazuje godziny wschodu i zachodu Słońca, datę tygodnia i miesiąca, ruch Słońca wzdłuż ekliptyki, a na stronie tylnej posiada obracającą się kulę ziemską z widoczną tą częścią, która
aktualnie oświetlona jest promieniami Słońca. Zegar ten, wraz z niektórymi innymi ze zbiorów drezdeńskich, wystawiony był w 1975 r. w Muzeum Techniki NOT w Warszawie.

Album można nabyć w Ośrodku Kultury i Informacji NRD w Warszawie przy ul. Świętokrzyskiej 18.

LUDWIK ZAJDLER

Ukazała się od dawna oczekiwana, bardzo potrzebna pozycja bibliograficzna stanowiąca w zmyśle Autorów jednolitą kompilację prac traktujących o problemie poszukiwania cywilizacji pozaziemskich (SETI). Pozycję otwiera krótki, dwustronicowy wstęp podający genezę poszukiwań ETI, a także historię i układ przedstawianej bibliografii. Następną część (strony od 3 do 11) wypełnia podział tematyczny. Autorzy wyróżniają 6 głównych działów:

1. Life-Supporting Extrasolar Environments
2. Origin and Evolution of Extrasolar Life
3. Methods of Searching for Extraterrestrial Intelligence
4. Decoding Signals from Extraterrestrial Intelligence
5. Philosophical, Psychological and Sociological Aspects of the Search for Extraterrestrial Intelligence
6. Miscellaneous.

W tym ostatnim dziale cytowane są także wybitne utwory gatunku Science Fiction odnoszące się do problematyki SETI i CETI.

Kolejna część to indeks systematyczny — zawiera on numery poszczególnych pozycji dotyczących tematyki danego działu. Dalej na stronach 12 do 30, Autorzy podają w porządku alfabetycznym czasopisma naukowe i popularnonaukowe drukujące cytowane w bibliografii artykuły i prace. Sposób podziału na poszczególne działy prezentowany jest pod opisem "Miscellaneous".

Ta niechętnie potrzebna publikacja zawiera, niestety, mankamenty, z których do najważniejszych zaliczyć wypada niedbałość edytorską.
Nazwiska słowiańskie są niemiłosiernie poprzekręcane, a w przypadku nazwisk polskich i tytułów polskich czasopism wprowadzono — nie wiadomo po co — transkrypcję fonetyczną. Nie byłoby to kamieniem obrazu, bowiem i nasze zasady pisowni dopuszczają — ale tylko w ścisłych określonych przypadkach — spolszczenie obcych nazwisk. Razi jednak brak jednolitej transkrypcji, przez co te same nazwiska bywają różnie pisane. I tak na przykład Olgierd Wołczek występuje raz jako Wolchek, drugi raz jako Wolcek; Andrzej Pilski występuje raz pod swoim nazwiskiem, drugi raz jako... Pishi, przy czym w obu przypadkach wymieniany jest jeden i ten sam artykuł drukowany w Uraniu. Tytuł czasopisma Człowiek i Światopogląd pisany jest raz Chłowjek i Świato­ pogląd, a raz Chlovjek i Śviyatopogląd. Szczególnie pokrzywdzony został Stanisław R. Brzostkiewicz, długoletni współpracownik Urании, którego nazwisko podane zostało w obłędnej transkrypcji: Bzhostkiyevitch — a przecież w każdej Uranii jest spis treści w j. angielskim i wystarczało tylko przepisać poprawnie nazwiska polskie. Zachodzi podejrzenie, iż autorzy amerykańscy w ogóle nie przysłali omawianej pracy do redakcji, a więc nie zdaли sobie sprawy, że różne wydania czasopisma polskie i tytuły polskich czasopism podane zostaną poprawnie, a w przypadku j. słowiańskich posługujących się cyrylicą transkrypcja zostanie ujednolicona.

T. ZBIGNIEW DWORAK

Mitości astronomii, a przede wszystkim pasjonacji CETI, zawdzięczam powinni Autorowi „My z Kosmosu” uzyskanie całego szeregu cennych informacji, pochodzących — sądząc po ich rewelacyjności — ze źródeł niedostępnych im samym. Nieprawdą więc jest, że pierwszą intencjonalną emisją ziemińską była osławiona depesza z Arecibo! Prawdą natomiast, iż Drake oraz Cocconi z Morrisonem (tak!) nadawali już w 1961 w kierunku gamma (!) Ceti oraz epsilon Eridani. Zaś o tym jak
bardzo ośmieszyli się amerykańscy nadawcy wspomnianej depeszy z Arecibo, kierując ją do gromady kulistej M 13 odległej o 7,7 kiloparseków, świadcząc podany przez red. Mostowicza zasięg użytej do tego celu instalacji w Puerto Rico: 10 kiloparseków. Nie więc dziwnego, że po takim błyskawicznym zabytkowym z ruchu planetarnego zaobserwowały z dalszych poszukiwań, jak Autor informuje w innym miejscu. Nareszcie też wiadomo skąd przybyła sonda, której sygnały znane jako tzw. opóźnione radioecho (LDE), próbowały rozwiązać Lunan, lliew, a na tych łamach Zb. Suchowski i W. Bożym: z konstelacji Bouvier a mianowicie! Te i wiele innych rewelacji zainteresowani Czytelnicy znajdą w omawianej książce — jeśli tylko uda się im ją zdobyć. Krajowa Agencja Wydawnicza postarała się bowiem, by „My z Kosmosu” rozchwytywała została w tempie „Trędowatej”, powierzając opracowanie okładki Janowi i Waldynie Fleischmann, autorom okładek wielce poczytnej serii kryminałów, wydawanej przez tenże KAW. Wiedzie to co prawda do nieporozumień przy zakupie, jednak daje pewne szanse na odkupienie książki od zmyłonych miłośników dreszczowców.

Wypada mi na koniec publicznie odwołać wszystkie swoje poprzednie wypowiedzi, czasem złośliwe a zawsze wątpiące, i wyznać niezachwiane już teraz przekonanie o rychłym lądowaniu na Placu Defilad latającego spodka z załogą rozdającą przypadkowym świadkom kamień z Ica oraz pleksiglasowe piramidki a la Cheops, i nadającą serie LDE, które po rozszyfrowaniu według niezawodnego algorytmu W. Bożym:wskażą nam miejsce startu: trójkąt bermudzki (spodek) i pustynia Nazca (filiżanka).

ZBIGNIEW PAPROTNY

Ta niewielka objętościowo popularnonaukowa pozycja, przedstawiająca jedną z najbardziej intrygujących planet, pojawia się w księgarniach polskich ze znacznym opóźnieniem. Nie jest dziełem przypadku, że wydana ją w 1977 roku — sto lat wcześniej, w 1877 roku, dokonano dwóch odkryć, które sprawiły, iż na przestrzeni całego wieku zainteresowanie Czerwoną Planetą osiągnęło niebywałe rozmiary i dały powód do szerokiej dyskusji o Marsie już nie tylko wśród samych astronomów. Odkrycie dwóch księżyców Marsa przez Asapha Halla oraz tzw. kanałów przez Giovanniego Schiaparelli’ego podziało także inspirujące na twórczość literacką — że wspomnieć chociażby słynną „Wojnę Światów” Herberta George’a Welisa.

Przedstawiana książka składa się z krótkiego wprowadzenia oraz z dwóch — rozłącznych rzec by można — części. We Wprowadzeniu Autor podaje najogólniejsze, podstawowe dane o Marsie — o jego orbicie, warunkach widoczności dla obserwatora ziemskiego, i o orbitach dwóch naturalnych satelitów Marsa. Autor zwraca uwagę, że obserwacje Marsa odrębnie zasadniczą rolę w sformułowaniu przez Keplera jego trzech praw ruchu planet, przy czym nie bez znaczenia była również względnie duża ekscentryczność orbity Marsa. Gdyby orbita Marsa była bardziej kołowa, być może Kepler nie wpadłby na genialny domysł, iż orbity planet są elipsoidami, co pozwoliło ostatecznie zrezygnować z koncepcji epicykli w teorii ruchów planet.
Część I przedstawia historię badań Marsa klasycznymi metodami astronomii. Zawiera ona wiele pouczających uwag oraz cennych wskazaówek dla miłośników obserwacji tej planety. Chociaż niektóre hipotezy dotyczące wyglądu powierzchni Marsa, stanu jego atmosfery, i budowy wewnętrznej Czerwonego Globu przestały być dzisiaj aktualne ustępując miejsca nowoczesnym poglądom, przedstawienie ich na łamach książki okazało się wcale pożyteczne. Autor pokazał, że hipotezy te stanowią niezbywalne osiągnięcia myśli ludzkiej, a bez pewnych pomyłek postęp w ogóle nie byłby możliwy, i znaczenie ich dla rozwoju nauki jest więcej niż historyczne. Wychodząc z nader skromnych danych i przesłanek natury ogólnej (fizycznej) astronomowie potrafili miemo wszystko dać poprawny obraz planety, mimo iż w licznych szczegółach — a nawet w większych fragmentach — różni się on od tego obrazu, jaki dziś znamy. Analiza tych rozbieżności to nie tylko porwująca historia zmagań człowieka w dążeniu do odgadnięcia rzeczywistego obrazu świata, to także ważny metodologicznie przyczynek do dalszych badań. Otoż jeśli już wiemy, jakie błędy popełniliśmy interpretując nader skąpy materiał obserwacyjny, to mając do dyspozycji podobnie niezupełne dane możemy przewidzieć, jakie niedokładności wyników należy się spodziewać, co pozwoli na formułowanie bardziej ogólnych hipotez — bez spotykanej często w minionych wiekach kategoryczności sądów opartych niekiedy na kruchych podstawach.

Część II książki przedstawia rezultaty badań Marsa przeprowadzanych przy użyciu automatycznych sond międzyplanetarnych serii „Mars”, „Mariner” i „Viking”. Omówione w niej zostały zarówno obrady Marsa obserwowane „z bliska” — a więc ze zdolnością rozdzielczą nieosiągalną dla instrumentów ziemskich, jak też wyniki sondowania atmosfery marsjańskiej i wreszcie rezultaty bezpośredniej eksploracji Czerwonej Planety. Mars okazał się o wiele ciekawszą planetą, niż ośmielano się przypuszczać — i o tak urozmaiconej powierzchni, że dla niektórych formacji trudno czasami jest znaleźć odpowiednik ziemski. Ponownie odzyskała dawna hipoteza kanałów, ale już w innej interpretacji. Okazało się bowiem, że niektóre z rysowanych uprzednio kanałów to realne utwory — są to z reguły ciągnące się na setki, a nawet tysiące kilometrów rozpadliny, inne odpowiadają granicom różnych formacji (tzw. lądów i mórz) lub łańcuchom górskim, jeszcze inne to łańcuszki kraterów, co oko odbierało jako jednolią, ciągłą linię — większość domniemywanych kanałów jest jednak po prostu i niestety złożonym, we wspomnianym przez lądowniki „Vikingów” nie zdołały dać decydującej odpowiedzi. Autor wyraża optymistyczne przekonanie, iż rezultaty eksperymentów wydają się jednak wskazywać na możliwość występowania na Marsie organicznego życia. „Niezbędne są dalsze badania” — oświadcza Autor.

Na zakończenie warto zwrócić uwagę, że doświadczenie zdobyte podczas interpretacji zdjęć i obrazów Marsa jest obecnie pomocne w tzw.
metodach teledetekcyjnych (biernych) badania powierzchni i atmosfery Ziemi „widzianej z Kosmosu” — tj. przy interpretacji satelitarnych zdjęć Ziemi.

T. ZBIGNIEW DWORAK

„Big bang” — nagły wzrost zainteresowań pozaziemskimi cywilizacjami

Jako najstarszą „Bibliografia” wymienia pracę Huygensa z 1722 roku, druga z XVIII w. — to publikacja Swedenborga z 1758 r. Nie uwzględniło kilku jeszcze dawniejszych, o których wspomina S. Lubertowicz w nr 5 „Uranii” z 1976 r.; były to raczej domysły, możemy ich więc nie brać pod uwagę.

Przedmiotem niniejszej „analizy” jest statystyczny rozkład tych publikacji w czasie. W ciągu XIX stulecia (między rokiem 1832 a 1897) ukazało się 11 publikacji. Już w pierwszym 25-leciu naszego wieku (między r. 1901 a 1925) liczba nowych publikacji podwoiła się i wyniosła 20. W następnym ćwierćwieczu (1926—1950) ogłoszono drukiem już 51 pozycji, ale kolejne ćwierćwiecze (1951—1975) wzbogaciło wykaz aż o 1233 artykułów bądź książek. Oznacza to przeciętnie 53 publikacje rocznie, więcej niż w całym poprzednim dwudziestopięciolatku! Wzrost ten trwa nadal — w roku 1976 ogłoszono 122 prace. Dobitniej przedstawia to poniższe zestawienie, w którym w pierwszej kolumnie podane są rozważane okresy, w drugiej — liczba publikacji w tych okresach (różnych), w trzeciej — przeciętna roczna liczba nowych publikacji:

wiek XVIII	2
wiek XIX	11 ok. 0,1
1901—1925 (25 lat)	20 1
1926—1950 (25 lat)	51 2
1951—1960 (10 lat)	165 16
1961—1970 (10 lat)	607 60
1971—1975 (5 lat)	551 110
rok 1976	122

Okres podwajania się liczby pozycji bibliograficznych w zakresie tego problemu wynosił w pierwszej połowie naszego stulecia ok. 25 lat, tempo wzrostu nagle zwiększyło się w latach pięćdziesiątych i okres podwajania się można dziś szacować na ok. 4 lat. Z przebiegu liczb w ostatniej kolumnie wnioskować należy, że okres ten „powinien” ulegać dalszemu skracaniu. Prognozowanie liczby publikacji na temat istnienia życia we Wszechświecie na okres choćby do końca b. stulecia, jedynie na podstawie „krzywej wzrostu”, doprowadziłoby nas do absur-
dalnych wniosków. Zdaje się, jeśli chcemy rachunkiem tym wykazać wzrost zainteresowania problemem, i bez statystyki możemy głosić, że sprawą istnienia (lub nie) „braci z Kosmosu” interesują się wszyscy, ale liczba publikacji wkrótce osiągnie stan nasycenia. Wtedy, gdy pisanie na ten temat okaza się zbędne...

LUDWIK ZAJDLER

KALENDARZYK ASTRONOMICZNY

Opracował G. Sitarski

Lipiec 1979 r.

Słońce

W lipcu Słońce wstępuje w znak Lwa i wędruje po ekliptyce w kierunku równika niebieskiego. W związku z tym dni są już coraz krótsze, o czym świadczą momenty wschodów i zachodów Słońca w Warszawie podane dla kilku dat: 1d wsch. 3h18m, zach. 20h1m; 11d wsch. 3h27m, zach. 19h55m; 21d wsch. 3h39m, zach. 19h15m; 31d wsch. 3h54m, zach. 19h30m.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>VII 1</td>
<td>−2°74</td>
<td>+2°90</td>
<td>207°39</td>
<td>VII 17</td>
<td>+4°46</td>
<td>+4°54</td>
<td>355°64</td>
</tr>
<tr>
<td>3</td>
<td>−1°84</td>
<td>+3°12</td>
<td>190°92</td>
<td>19</td>
<td>+5°34</td>
<td>+4°72</td>
<td>329°18</td>
</tr>
<tr>
<td>5</td>
<td>+0°92</td>
<td>+3°33</td>
<td>154°44</td>
<td>21</td>
<td>+6°21</td>
<td>+4°90</td>
<td>302°72</td>
</tr>
<tr>
<td>7</td>
<td>+0°02</td>
<td>+3°54</td>
<td>127°98</td>
<td>23</td>
<td>+7°07</td>
<td>+5°08</td>
<td>276°26</td>
</tr>
<tr>
<td>9</td>
<td>+0°88</td>
<td>+3°75</td>
<td>101°50</td>
<td>25</td>
<td>+7°92</td>
<td>+5°25</td>
<td>249°80</td>
</tr>
<tr>
<td>11</td>
<td>+1°80</td>
<td>+3°95</td>
<td>75°04</td>
<td>27</td>
<td>+8°76</td>
<td>+5°41</td>
<td>223°34</td>
</tr>
<tr>
<td>13</td>
<td>+2°68</td>
<td>+4°15</td>
<td>48°56</td>
<td>29</td>
<td>+9°58</td>
<td>+5°57</td>
<td>196°88</td>
</tr>
<tr>
<td>15</td>
<td>+3°58</td>
<td>+4°35</td>
<td>22°10</td>
<td>31</td>
<td>+10°39</td>
<td>+5°72</td>
<td>170°43</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
B₀, L₀ — heliograficzna długość i szerokość środka tarczy.

Księżyc

Bezksiężycowe noce będziemy mieli w drugiej połowie miesiąca, bowiem kolejność faz Księżyca jest w lipcu następująca: pierwsza kwadra 2d16h, pełnia 9d21h, ostatnia kwadra 16d12h, nów 24d3h. Najbliżej Ziemi znajduje się Księżyc 11, a najdalej od Ziemi 27 lipca. W lipcu tarcza Księżyca zakryje Aldebarana, najjaśniejszą gwiazdę w gwiazdozbiorze Byka, ale zjawisko to będzie u nas niewidoczne.

Planety i planetoidy

W pierwszej dekadzie lipca możemy jeszcze próbować odnaleźć Merkur, wieworem nisko nad zachodnim horyzontem (około +0.5 wielk. gwiazd.), Venus wschodzi na krótko przed Słońcem i rankiem nisko nad wschodnim horyzontem powinniśmy ją odnaleźć w blasku...
wschodzącego Słońca (—3.4 wielk. gwiazd.). Mars widoczny jest w drugiej połowie nocy w gwiazdozbiorze Byka, gdzie świeci jako czerwona gwiazda słabsza jednak od Aldebarana (+1.5 wielk. gwiazd.). Jowisz zachodzi wieczorem, a Saturn późnym wieczorem, świecąc odpowiednio jak gwiazdy +1.3 wielkości w gwiazdozbiorze Raka i +1.1 wielkości w gwiazdozbiorze Lwa. Uran widoczny jest w pierwszej połowie nocy w gwiazdozbiorze Wagi (6 wielk. gwiazd.), a Neptune prawie całą noc w gwiazdozbiorze Wężownika nisko nad horyzontem (8 wielk. gwiazd.). Pluto jest niewidoczny.

Przez lunety możemy próbować odnaleźć planetoidę Pallas, widoczną jako gwiazdkę około 10 wielkości na granicy gwiazdozbiorów Pegaza i Delfina. Dla łatwiejszego zidentyfikowania obszaru, gdzie przebywa planetoida, podajemy jej rektascensję i deklinację dla kilku dat. 1d: 21h36m8, +15°5'; 11d: 21h32m8, +15°1'; 21d: 21h27m2, +14°35'; 31d: 21h20m3, +13°45'. Planetoidę odróżnimy od gwiazd po jej zmianie położenia na niebie w ciągu kilku kolejnych nocy.

Meteory

W drugiej połowie lipca promieniują delta Akwarydy (maksimum 28 lipca), meteory z roju o podwójnym radiancie w gwiazdozbiorze Wodnika: rekt. 22h36m, dekl. —17° i 0°. W maksimum aktywności powinniśmy obserwować ponad 30 meteorów w ciągu godziny, a warunki obserwacji są w tym roku dobre.

** **

3d O 23h Ziemia znajdzie się na swej orbicie najdalej od Słońca (w odl. 152 milionów km). W tym samym czasie Merkury będzie w najwęższej wschodniej elongacji od Słońca (26°).
4d10h Pluton nieruchomy w rektascensji.
5d12h Księżyc w złączeniu z Uranem w odl. 5°.
7d21h Księżyc w złączeniu z Neptunem w odl. 4°.
10d17h Mars w złączeniu z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiorze Byka. W drugiej połowie nocy obserwujemy oba ciała niebieskie jako czerwone gwiazdy, przy czym Mars jest o 0.5 wielkości gwiazdowej słabszy od Aldebarana.
17d3h Merkury nieruchomy w rektascensji.
19d24h Księżyc w bliskim złączeniu z Aldebaranem. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w południowej i wschodniej Azji oraz na północnym Pacyfiku.
20d13h Księżyc w złączeniu z Marsem w odl. 5°.
23d12h Słońce wstępuje w znak Lwa; jego długość ekliptyczna wynosi wówczas 120°.
26d16h Uran nieruchomy w rektascensji.
27d15h Saturn w złączeniu z Księżycem w odl. 2°.
31d18h Dolne złączenie Merkurego ze Słońcem.

Minima Algola (beta Perseusza): lipiec 4d7h10m, 7d4h0m, 10d0h50m, 12d21h35m, 15d18h25m, 27d5h40m, 30d2h30m.

Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim. **Uwaga:** w przypadku przejścia w Polsce na czas letni, należy do każdej podanej w Kalendarzyku daty dodać 1h.
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.

Chronicle: Really the solution of the secret of the „Tungusian Meteorite”? — Are stars born in elliptical galaxies?

Conferences and meetings: IV Congress of International Union of Amateur Astronomers.

New Books.

Astronomical Calendar.

OGŁOSZENIE

Odstąpię refraktor φ 50, f = 400, p 40 x

Jarosław Wojtaszko

Radawczyk

24-221 Strzeszkowice
ČOVJEK I SVEMIR
Časopis zagrebačke zvjezdarnice

Indeks 38001

1. **Kłopoty z Newtonowskim Wszechświatem**

Wielkim sukcesem teorii fizycznej jest znalezienie swojej następczyni. Dopiero z punktu widzenia kolejnej, ogólniejszej teorii można określić zakres stosowalności teorii poprzedniej, a zrozumienie własnych ograniczeń to bez wątpienia duże osiągnięcie. Można nawet, nieco paradoksalnie, powiedzieć, że konstrukcja teorii fizycznej jest dopiero wtedy ukończona, gdy teoria ta zostaje zastąpiona przez nową teorię. Tak było z Newtonowską teorią grawitacji. Przez około trzy wieki wydawało się, że zakres zastosowań tej teorii jest nieograniczony. Newtonowskie prawo głoszące proporcjonalność siły przyciągania do iloczynu przyciągających się mas i odwrotną proporcjonalność do kwadratu odległości pomiędzy nimi, jednakowo dobrze stosowało się do jabłka, które spada z drzewa na ziemię jak i do planet, krążących wokół Słońca po eliptycznych orbitach. Utrwalił się pogląd o absolutnej powszechności teorii Newtona. Kierunek filozoficzny zwany mechanicyzmem traktował to twierdzenie jako swój podstawowy dogmat. Był to kierunek głoszący, że całą rzeczywistość da się wyjaśnić przy pomocy prostych oddziaływań mechanicznych. Ale dogmat mechanicystów upadł nieodwołalnie z chwilą, gdy Einstein stworzył ogólną teorię względności. Teoria Einsteina była bowiem niczym innym, jak tylko nową teorią grawitacji. Okazało się, że dla pól grawitacyjnych o słabym natężeniu wzory Einsteina do-wolnie mało różnią się od wzorów Newtona, ale dla pól grawitacyjnych o dużych natężeniach teoria Einsteina przewiduje znaczne odchylenia w porównaniu do teorii Newtona. I co najważniejsze, w przypadku silnych pól grawitacyjnych doświadczanie potwierdza przewidywania teorii Einsteina a nie teorii Newtona. W ten sposób ogólna teoria względności wyznaczyła granice stosowalności klasycznej (Newtonowskiej) teorii grawitacji.

Od samego początku istnienia teorii Newtona próbowano w oparciu o nią skonstruować model Wszechświata. Niestety, próby te nie dawały żadnego pozytywnego rezultatu. Już sam Newton zauważył, że pole grawitacyjne pochodzące od gwiazd rozrzuconych mniej więcej równomiernie w nieskończonej
przestrzeni powinno powodować zapadanie się wszystkich gwiazd do jednego punktu. Potem zauważono, że zastosowanie fizyki Newtona do Wszechświata jako całości daje wyniki tak niezgodne z obserwacjami, że nie wahano się ich nazywać paradoksami. Do najbardziej znanych należy paradoks Seeligersa i paradoks Olbersa. Obydwa te paradoksy zakładają, że Wszechświat jest przestrzennie nieskończony. Założenie przestrzennej nieskończoności świata w okresie rządów mechaniki Newtona przyjmowano powszechnie bez większych wątpliwości. Jedyną geometrią, jaką podówczas znano, była geometria Euklidesa, a ta mówiła o nieskończonej przestrzeni (na przykład, w słynnym piątym postulacie Euklidesa jest mowa o „prostych, które przecinają się w nieskończoności”). Jeżeli gwiazdy są równomiernie rozłożone w nieskończonej przestrzeni, to — jak pokazał Seeliger — potencjał grawitacyjny w każdym punkcie Wszechświata nie powinien mieć określonej wielkości, a jasność wszystkich gwiazd — jak zauważył Olbers — nakładając się na siebie, powinna sprawiać świcie nie całego nocnego nieba jednostajnym blaskiem. Tymczasem tak nie jest: potencjały grawitacyjne w każdym punkcie przestrzeni są dobrze określone, a wieczorne niebo jest ciemne i tylko z rzadka usiane gwiazdami.

Einstein zbudował swój pierwszy model kosmologiczny w 1917 roku nie w oparciu o teorię grawitacji Newtona, lecz w oparciu o ogólną teorię względności. Jednym z motywów, jaki przyświecał Einsteinowi w tej pracy, była chęć przezwyciężenia paradoksów Newtonowskiej kosmologii. Gdy mu się to udało (przynajmniej, gdy idzie o paradoks Seeligersa, paradoks Olbersa został usunięty przez stworzone później modele rozszerzającego się świata), utrwaliło się przekonanie, że teoria Newtona nie nadaje się do opisu Wszechświata jako całości.

2. Metoda i wyniki kosmologii neonewtonowskiej

Wkrótce jednak jeszcze raz sprawdziła się reguła głosząca, że wcześniejszą teorię można lepiej zrozumieć dopiero z punktu widzenia następnej teorii. Jak pamiętamy z poprzedniego rozdziału, Milne nie lubił kosmologii relatywistycznej, gdyż nie dawała mu ona „wglądu do zjawisk”. Ponieważ Milne chciał mimo wszystko taki „wgląd” uzyskać, intensywnie studiował kosmologię relatywistyczną, porównywał ją z teorią Newtona, która była dla niego intuicyjnie jasna, tworzył własne konceptje. Wiemy, że doprowadziło go to do nowego modelu
Wszechświata. W trakcie pracy, niejako mimochodem, Milne zauważył, że jeśli przyjąć zasadę kosmologiczną (tzn. założenie jednorodności i izotropowości rozkładu materii w przestrzeni) i nie upierać się przy tym, że model Wszechświata musi być statyczny, to w oparciu o teorię Newtona można zbudować model kosmologiczny; co więcej, funkcja opisująca ewolucję tego modelu w czasie ma identyczny kształt jak odpowiednia funkcja dla modelu relatywistycznego, zwanego światem Einsteina—de Sittera. Praca Milne’a na ten temat ukazała się w 1932 roku [1]. Wkrótce potem Milne wraz z Mc Crea [2] pełniej rozwinięli zagadnienie możliwości budowania Newtonowskich modeli kosmologicznych i ich analogii z modelami relatywistycznymi.

Przede wszystkim okazało się, że dużą część winy za dość czasowe niepowodzenia w zbudowaniu Newtonowskiego modelu kosmologicznego ponosił zakorzeniony nawyk, by Wszechświat traktować jako twór statyczny. Z chwilą gdy, dzięki kosmologii relatywistycznej, stało się jasnym, iż jest to tylko nawyk a nie wynik solidnych obserwacji, znikły powody, by cechę statyczności siłą włączać do Newtonowskiego obrazu świata. Po zaniechaniu tego „nienaturalnego” zabiegu równania Newtona natychmiast poddały się, dając poprawne rozwiązania.

Milne i Mc Crea zrobili także użytek z zasady kosmologicznej, Wprawdzie nazwa „zasada kosmologiczna” została wprowadzona dopiero przez Milne’a, ale wszystkie rozważane dotychczas przez kosmologię relatywistyczną modele Wszechświata opierały się na założeniach jednorodności i izotropowości rozkładu materii, stanowiących treść tej zasady. Milne i Mc Crea poszli utartą drogą. Należy wszakże zwrócić uwagę, że o ile odrzucenie statyczności świata w sposób istotny przyczyniło się do możliwości stworzenia kosmologii Newtonowskiej, o tyle zasada kosmologiczna nie jest do tego celu niezbędna. W istocie jakiś czas potem O. Heckman [3] skonstruował — w oparciu o teorię Newtona — proste modele anizotropowe, a więc nie spełniające zasady kosmologicznej, tak jak ją pojmował Milne.

Pewnego rodzaju zależność kosmologii Newtonowskiej (lub neonewtonowskiej, jak się ją czasem nazywa, celem odróżnienia od dawniejszych, nieudanych prób zbudowania modelu Wszechświata w oparciu o teorię Newtona) w stosunku do kosmologii relatywistycznej pojawiła się jeszcze w kilku punktach w trakcie budowania modelu. W teorii Newtona istnieją mia-
nowicie pewne luki, bez wypełnienia których nie dałoby się zbudować kompletnego modelu kosmologicznego. Tak na przykład sama teoria Newtona nie dostarcza informacji o prędkości rozchodzenia się światła, a jest to informacja istotna dla kosmologii, sygnały świetlne są bowiem podstawowymi środkami porozumiewania się obserwatorów, również przez analizę sygnałów świetlnych obserwatorzy dowiadują się o przesunięciu ku czerwieni w widmach galaktycznych. Milne i Mc Crea wypełnili tę lukę teorii Newtona zapożyczając od teorii względności założenie o stałości rozchodzenia się światła. Także kierując się analogią z kosmologią relatywistyczną, równania kosmologii Newtona można uzupełnić czlonem zawierającym stałą kosmologiczną. W ten sposób otrzymuje się rozwiązania Newtonowskie analogiczne do wszystkich rozwiązań Friedmana.

Widzimy więc, że kosmologia relatywistyczna była niejako przewodnikiem w tworzeniu kosmologii neonewtonowskiej. Mimo tego ogólny wynik, jaki otrzymali Milne i Mc Crea, był zaskakujący zarówno dla nich samych, jak i dla ówczesnej społeczności kosmologów. Wynik ten można wyrazić słowami Milne’a: „symboliczna reprezentacja kosmologii Newtonowskiej jest formalnie identyczna z symboliczną reprezentacją kosmologii »ogólnej« teorii względności, ale ta ostatnia domaga się odmiennej interpretacji w odniesieniu do obserwacji”. ([4], s. 290).

Co to znaczy? Otóż znaczy to dokładnie tyle, że równania kosmologii neonewtonowskiej i kosmologii relatywistycznej (jeśli obydwie przyjmują zasadę kosmologiczną) z matematycznego punktu widzenia są identyczne, natomiast fizyczna interpretacja niektórych symboli występujących w tych równaniach musi być odmienna. Tak na przykład w równaniach jednej jak i drugiej kosmologii występuje pewna stała, oznaczona tradycyjnie przez k. W kosmologii relatywistycznej przestrzeń może być zakrzywiona i stała k określa właśnie krzywiznę przestrzeni (która może być dodatnia, ujemna lub zerowa). W kosmologii Newtonowskiej przestrzeń zawsze jest płaska, Euklidesowa, a stałą k interpretuje się jako wielkość związaną z energią potencjalną Wszechświata.

3. Tytułkomentarza
Od początku badaczy zastanawiała ścisła „równoległość” pomiędzy wynikami dwóch systemów kosmologicznych opartych na dwóch tak różnych teoriach, jakimi są Newtonowska teoria
grawitacji i ogólna teoria względności. W charakterze wyjaśnienia zwracano uwagę na fakt, że średnia gęstość materii w Wszechświecie jest bardzo mała, rzędu $10^{-31} - 10^{-28}$ g/cm3, a co za tym idzie „średnie pole grawitacyjne Wszechświata” bardzo słabe; z drugiej strony wiadomo przecież, że w wypadku pól grawitacyjnych o małym natężeniu ogólna teoria względności daje w przybliżeniu takie same wyniki jak teoria Newtona. (Dla porównania średnia gęstość Słońca wynosi 1,4 g/cm3, a odchylenia od teorii Newtona przewidywane przez ogólną teorię względności są raczej niewielkie). A zatem zbieżność wyników obu teorii na terenie kosmologii nie powinna budzić zdziwienia.

Dodajmy jeszcze dwie następujące racje. Po pierwsze, zarówno kosmologia relatywistyczna w pierwszej fазie swojego rozwoju, jak i kosmologia neonewtonowska stworzona przez Milne’a i Mc Crea, jako jedno ze swoich naczelnych założeń przyjmowała zasadę kosmologiczną. Zasada kosmologiczna, jak już nam wiadomo, postuluje jednorodność (brak wyróżnionych punktów) i izotropowość (brak wyróżnionych kierunków) przestrzeni. Mówiąc inaczej, zasada kosmologiczna postuluje pewnego rodzaju symetrię w rozkładzie mas (postuluje mianowicie sferycznie symetryczny rozkład materii względem każdego obserwatora nie poruszającego się w żaden wyróżniony sposób). Otóż okazuje się, że wyniki w kosmologii zależą nie tylko od równań teorii grawitacji, ale także w bardzo silnym stopniu od przyjętych założeń symetrii. Ponieważ w obu kosmologiach przyjęto takie same założenia symetrii (zasadę kosmologiczną), ich wyniki są bardzo podobne. Lub innymi słowy: duża część kosmologii mieści się nie w równaniach pola grawitacyjnego, lecz w założeniach symetrii, a te są wspólne kosmologii neonewtonowskiej i kosmologii relatywistycznej.

Po drugie, nie wolno zapominać, że kosmologia neonewtonowska została stworzona „na wzór” kosmologii relatywistycznej — to na pewno zaważyło także na jej wynikach.

Nie należy wszakże sądzić, że powyższe uwagi całkowicie wyjaśniają status kosmologii Newtonowskiej. Spory na ten temat nie są zakończone [6], ich referowanie zaprowadziłoby nas jednak do zbyt technicznych zagadnień ([5], s. 180—185). Nie sądzmy także, że kosmologia neonewtonowska może w jakikolwiek sposób zastąpić kosmologię relatywistyczną. Wszyscy kosmologowie, łącznie z Milne’m i Mc Crea, widzą pewnego rodzaju sztuczność kosmologii opartej na klasycznej teorii Newtona. Kosmologia ta spełnia przede wszystkim rolę heurystycznej.
nà: wzory Newtonowskie są zwykle łatwiejsze do zinterpretowania i interpretację tę można potem przenosić na analogiczne wzory kosmologii relatywistycznej. Ale — uwaga! — nie zawsze; porównaj na przykład powyżej zagadnienie interpretacji stałej k, która w kosmologii neonewtonowskiej wiąże się z „energią potencjalną Wszechświata”, a w kosmologii relatywistycznej z zakrzywieniem przestrzeni. Poza tym kosmologia neonewtonowska, będąc matematycznie o wiele prostszą, służy zwykle początkującym adeptom kosmologii jako przedmiot ćwiczeń rachunkowych. Newton był jednak przed Einsteinem!

Przypisy

KRZYSZTOF ZIOŁKOWSKI — Warszawa

BADANIA KOSMICZNE W POLSCE

W rok po pamiętnym locie pierwszego polskiego kosmonauty, gdy minęła już euforia towarzysząca temu wydarzeniu, warto jeszcze raz spojrzeć na dorobek polskiej nauki w dziedzinie badań kosmicznych, tym bardziej, że na łamach Uranii poświęcaliśmy dotychczas tym zagadnieniom niewiele miejsca. Badania kosmiczne koncentrują się w Polsce na sześciu następujących głównych kierunkach:
— fizyka kosmiczna,
— geodezja satelitarna,
— teledetekcja,
— meteorologia kosmiczna,
— łączność kosmiczna,
— biologia i medycyna kosmiczna.

Koordynacją większości prac w tym zakresie zajmuje się utworzone w 1977 roku w Polskiej Akademii Nauk Centrum Badań Kosmicznych. Prawie wszystkie badania prowadzone są w ra-
mach programu INTERKOSMOS posiadającego od 1976 roku rangę międzyrządowego porozumienia państw socjalistycznych w sprawie badań i pokojowego wykorzystania przestrzeni kosmicznej.

Fizyka kosmiczna jest podstawową dziedziną badań kosmicznych, dającą rozceznanie w podstawowych zjawiskach materii nieożywionej zachodzących w bezpośrednio otaczającej Ziemię przestrzeni, a także w dalszych rejonach Wszechświata. Ponieważ przestrzeń kosmiczna jest wypełniona bardzo rozrzedzonym gazem, którego cząstki są na ogół obdarzone ładunkiem elektrycznym (jest to tzw. plazma), fizyka kosmiczna jest w znacznym stopniu fizyką rozrzedzonej plazmy poddanej działaniu zmiennych w czasie i przestrzeni pól elektrycznych i magnetycznych przenikających przestrzeń kosmiczną. Specyfiką plazmy kosmicznej, w odróżnieniu od typowej sytuacji laboratoryjnej, jest brak ścianek "naczynia" niszczących w znacznym stopniu samoistne procesy plazmowe, oraz olbrzymie rozmiary, a zatem stosunkowo długie skale czasowe charakterystycznych procesów. Dzięki temu w laboratorium kosmicznym można względnie łatwo badać takie zjawiska, których w warunkach ziemskich nie da się urzeczywistnić ze względu na ograniczoność przestrzeni i krótkotrwałość zjawiska.

Polski program badań w zakresie fizyki kosmicznej jest ukierunkowany przede wszystkim na badania górnych warstw atmosfery Ziemi (jonosfery) oraz na analizę wpływów jakie procesy rozgrywające się na Słońcu i w przestrzeni międzyplanetarnej wywierają na plazmę okołoziemską.

Po raz pierwszy polska aparatura znalazła się w przestrzeni kosmicznej 28 listopada 1970 roku, wyniesiona na wysokość około 500 km za pomocą rakiety Vertikał. Był to tzw. spektrosfotograf rentgenowski i blok kamer służące razem do badania kondensacji w koronie słonecznej, które są głównymi źródłami promieniowania rentgenowskiego Słońca. Eksperyment został powtórzony w 1971 roku.

Pierwszy polski eksperyment na sztucznym satelicie Ziemi dotyczył badania oddziaływań cząstek wysokiej energii pochodzących z promieniowania kosmicznego, a w szczególności ciężkich jąder, na emulsję światloczułą, której blok był umieszczony na satelicie Interkosmos 6 wprowadzonym na orbitę 7 kwietnia 1972 roku.

Pierwszym kompleksowym eksperymentem satelitarnym był pomiar promieniowania radiowego Słońca na falach dłuższych od 50 m za pomocą radiospektrografu umieszczonego na
satelicie Interkosmos-Kopernik 500 (Interkosmos 9) wystrzelonego 19 kwietnia 1973 roku.* Podczas półrocznego okresu życia satelity zarejestrowano około 50 wybuchów radiopromieniowania słonecznego w paśmie częstotliwości od 2 do 6 MHz i stwierdzono, że niektóre z nich mają nieregularną strukturę o skali czasowej rzędu sekund, w przeciwieństwie do zwykłych wybuchów, dla których czas tłumienia wynosi kilkadziesiąt sekund. Wybuchy tego typu powstają w wyniku rozpraszania i oddziaływania fal plazmowych, wzbudzanych w koronie słonecznej strumieniami naładowanych cząstek pędzących z prędkościami rzędu 1/3 prędkości światła. Do najciekawszych wyników eksperymentu należy zaobserwowanie polaryzacji trzech wybuchów w paśmie od 2 do 4 MHz. Były to pierwsze na świecie pomiary polaryzacji radiopromieniowania wykonane na satelicie, a stały się one możliwe dzięki zastosowaniu oryginalnej metody polegającej na wykorzystaniu jonosfery jako polaryzatora. Zbadanie widm dynamicznych wybuchów promieniowania radiowego Słońca rozszerza wiedzę o naturze cząstek wzbudzających te wybuchy, strukturze plazmy korony słonecznej, mechanizmach generowania fal plazmowych i przekształcania tych fal w energię promieniowania elektromagnetycznego. Równie ważny rezultat uzyskano w wyniku pomiarów szumów radiowych jonosfery: stwierdzono mianowicie występowanie w plazmie jonosferycznej samoistnie generowanych tzw. fal Bernstein.

Oprócz fragmentów aparatury dla telemetrii ETMS na satelicie Interkosmos 19 znajduje się zaprojektowany i skonstru-
owy w Polsce analizator fal elektromagnetycznych IRS-1 dla przeprowadzenia kolejnego poważnego eksperymentu JONOSOND. Celem tego eksperymentu jest pomiar na różnych częstotliwościach w zakresie od 0.6 do 6 MHz intensywności naturalnych szumów elektromagnetycznych występujących w placie jonosferycznej, oraz takich, które wywołane są sztucznie przy emisji fal elektromagnetycznych. Badania tych zjawisk w jonosferze na wysokościach kilkuset kilometrów nad powierzchnią Ziemi są ważne zarówno z punktu widzenia praktycznych zastosowań w telekomunikacji jak również teoretycznych badań fizyki plazmy.

Liczne badania prowadzi się bez umieszczania własnej aparatury w przestrzeni kosmicznej, a jedynie za pomocą naziemnych obserwacji bądź to sztucznych obiektów bądź też naturalnych procesów fizycznych. Np. jedną z pierwszych dużych wspólnych operacji INTERKOSMOS-u było kompleksowe badanie jonosfery poprzez odbiór sygnałów radiowych satelity Kosmos 261 i jednoczesny pomiar wszystkich możliwych parametrów fizycznych związanych z jonosferą przez obserwatoria 7 krajów socjalistycznych. Otrzymano wiele interesujących wyników, między innymi pierwsze informacje o kątowym rozkładzie energii fotoelektronów w jonosferze. Innym przykładem może być opracowanie — na podstawie danych z sondowania jonosfery prowadzonych w Miedzeszynie — numerycznego modelu wysokościowego rozkładu koncentracji elektronowej dla obszaru Polski, który jest wykorzystywany do stałego prognozowania stanu jonosfery i warunków propagacji fal radiowych dla różnych służb telekomunikacyjnych. Przykładem ciekawszych wyników teoretycznych jest opracowany ostatnio fotochemiczny model jonosfery, który po raz pierwszy na świecie uwzględnia reakcje chemiczne między 38 rodzajami jonów i wykazuje bardzo dobrą zgodność z pomiarami w stosunkowo dużym zakresie wysokości od 70 do 300 km.

Głównym celem geodezji satelitarnej jest wykorzystanie metod i technik kosmicznych do określenia kształtu globu ziemskiego, rozkładu mas w jego wnętrzu i związanych z tym zagadnień przemieszczeń kontynentów, ruchów biegunów, przypływów i odpływów skorupy ziemskiej itp. Obrazowo mówiąc, sztucznego satelity można uważać za wierzchołek ruchomej wieży triangulacyjnej; ruch tego wierzchołka w polu grawitacyjnym Ziemi zależy od kształtu i niejednorodności w strukturze wewnętrznej globu, od oporu górnych warstw atmosfery, wpływu Słońca i Księżyca i innych czynników zakłócających.
Wyznaczenie z naziemnych obserwacji dokładnego toru, po którym porusza się satelita, umożliwia odtworzenie struktury globu.

Tradycje wyznaczania pozycji satelitów sięgają w Polsce 1957 roku czyli pojawienia się pierwszych sputników. Początkowo obserwacje były wykonywane wyłącznie wizualnie. Obecnie stacja obserwacyjna w Borowcu koło Poznania wyposażona jest w specjalną dla obserwacji satelitarnych kamerę fotograficzną oraz aparaturę laserową. Posiadany przez nią dalmierz laserowy mierzy odległość do satelity rzędu tysiąca kilometrów z dokładnością 1.5 m, a budowane jest doskonalsze urządzenie o dokładności o rząd wyższej.

Do najciekawszych wyników ostatnio uzyskanych w zakresie geodezji satelitarnej należy wykonanie i opracowanie dopplerowskich obserwacji sztucznych satelitów (pomiar prędkości ruchu satelity metodą radiową) oraz wyznaczenie na ich podstawie współrzędnych stacji w Borowcu z dokładnością rzędu 0.5 m czyli o czynnik 3—5 lepszą niż dotychczas uzyskiwana. Jest to pierwsze tak dokładne wyznaczenie położenia stacji obserwacyjnej w krajach socjalistycznych.

Obiecującą metodą badania niejednorodności pola grawitacyjnego Ziemi jest przygotowywany obecnie eksperyment DIDEX polegający na pomiarze ruchu względnego dwóch satelitów z pokładu trzeciego. W wyniku tego eksperymentu oczekuje się zmniejszenia błędu wyznaczania kształtu globu z aktualnych 5 m do około 2 m.

STANISŁAW R. BRZOSTWIEWICZ — Dąbrowa Górnicza

KSIĘŻYCE MARSA W ŚWIETLE NAJNOWSZYCH BADAŃ

Astronomów trzeba jednak usprawiedliwić, gdyż księżyce Marsa to bardzo trudne do obserwacji obiekty kosmiczne. Prze­
de wszystkim mają niewielkie rozmiary i przez największe teleskopy są widoczne jako świetlne punkty, a ponadto krążą blisko macierzystej planety i jej ośniewające światło tłumi ich blask. A przecież wszystkie wiadomości o fizycznych pa­
rametrach marsjańskich księżyców były do niedawna oparte o naziemne pomiary fotometryczne. Zakładano przy tym, że mają takie samo albedo jak Mars lub że się ono mało od niego różni. W rzeczywistości zaś marsjańskie księżyce są bar­
do ciemnymi ciałami, odbijającymi nie więcej niż 5—6% pa­
dającego na nie światła słonecznego. Jest to oczywiście wartość średnia, gdyż — jak to wykazały najnowsze badania — niektóre miejsca na powierzchni Phobosa i Deimosa są jeszcze ciemniejsze. Odbijają one zaledwie 2% światła, co odpo­
iada albedo najciemniejszych planetoid.

Te i wiele innych informacji uzyskano na podstawie ana­
lizy zdjęć Phobosa i Deimosa, które otrzymano w latach 1971—1972 za pomocą sondy „Mariner-9”. Planetologowie czekali na nie z wielkim zniecierpliwieniem, byli bowiem ogromnie ciekawi, czy na powierzchni księżyków Marsa występują kratery i czy ewentualnie są one podobne do kraterów na Księżycu. To zaś nie było takie pewne, gdyż siła przyciągania tych nie­
wielkich ciał mogła być za słaba, by nie dopuścić do ucieczki materii wybitej przez upadające meteoryty. Zastanawiano się też, czy tamtejsze kratery — o ile w ogóle istnieją — otoczone są wałami górszymi. Gdyby bowiem wyruzcza z nich materia umknęła w przestrzeń kosmiczną, to winny one przypominać raczej płytkie niecki koliste.

Rzeczywistość przeszła jednak najśmielsze oczekiwania pla­
etologów. Powierzchnie marsjańskich księżyków są bowiem zryte dosłownie kraterami różnej wielkości i kształtu. Ich ude­
erzeniowe pochodzenie nie budzi najmniejszej wątpliwości, gdyż na tak małych ciałach nie mogą przecież przebiegać zjawiska wulkaniczne i dlatego należy stanowczo wykluczyć przypuszczenie, by to mogły być wygasłe wulkany. Powstały one bez wątpienia na skutek zderzeń marsjańskich księżyków z me­
teoroidami różnej wielkości, o czym świadczy zarówno zupełnie przypadkowe rozmieszczenie tamtejszych kraterów, jak i ich liczba według wielkości. Najliczniejsze są bowiem na księży­
cach Marsa — tak samo jak na powierzchni naszego Księży­
ca — kratery najmniejsze. Ale mimo tych przekonywujących dowodów zwolennicy hipotezy wulkanicznej nie kapitulują,

Na zdjęciach Phobosa otrzymanych za pomocą kamer „Vi­kingów” uwagę przykuwają tajemnicze formacje, nie wystę­pujące na innych ciałach typu planetarnego. Mowa tu o sy­stemie równoległych bruzd, ciągnących się na odległość kilku kilometrów i mających od 100 do 200 m szerokości, a głębo­kość dochodzącą do 90 m. Tworzą one odcinki okręgów, płas­szczyzny których są prostopadłe do płaszczyzny orbity Phobo­sa. Na tej podstawie uczeni amerykańscy — Steven Soter i Alan Harris — doszli do wniosku, że mogą to być pęknięcia jego skorupy powstałe w wyniku oddziaływania sił płynowych Marsa. Ale gdyby pogląd ten był słuszny, bruzdy winny wy­stępować także w okolicy południowego bieguna Phobosa, gdzie jednak takich utworów nie zaobserwowano. Wysuniętą przez Sotera i Harrisa hipotezę podwaza również znaczny wiek tych niezwykłych formacji. Przecinają one wprawdzie duże, mocno już zerodowane kratery uderzeniowe, lecz same też są poprze­rywane małymi, dobrze zarysowanymi utworami kraterowymi, które jednak — jak się przynajmniej teraz ocenia — mają
około miliarda lat. Bruzdy muszą więc być od nich starsze, a przecież siły pływowe dziś także na Phobosie oddziaływują i to nawet silniej niż w przeszłości, bo jego orbita — o czym będzie jeszcze mowa — z każdym rokiem coraz bardziej się zacieśnia. Jeżeli zatem odkryte na Phobosie bruzdy rzeczywiście powstały na skutek tych oddziaływań, to dlaczego nie mają tam młodszych formacji tego typu?

Stwierdzenie powyższe stanowi poważny argument przeciwko hipotezie Sotera i Harrisa. Trzeba również zdecydowanie odrzucić pogląd, że system paralelnych bruzd na Phobosie to ślady rozpadu hipotetycznego protoksiężyca Marsa. Gdyby bowiem tak faktycznie było, bruzdy musiałbyby występować także na powierzchni Deimosa. A ponieważ tak nie jest, trzeba zadowolić się inną, bardziej realniejszą hipotezą, której autorami są Thomas Duxbury, Joseph Veverka i P. Thomas. Uważają oni, że odkryty na Phobosie system paralelnych bruzd związany jest z formowaniem się utworu Stickney. Ten olbrzymi krater, mający około 11 km średnicy (więcej niż jedna trzecia średnicy samego księżyca), musiał wybić potężny me­teoryt. Wyrwał on około 42 km³ materii z Phobosa i być może doszło wówczas do degazacji jego wnętrza, a w następstwie tego powstały właśnie zagadkowe bruzdy. W tym jednak przypadku na ich dnie winny znajdować się niewielkie otwory, przez które wydostawały się lotne substancje.

Niestety, tak dokładnymi zdjęciami dziś jeszcze nie dysponujemy, toteż i powyższa hipoteza musi pozostać w sferze domysłów. Na podstawie posiadanych materiałów trudno też wyjaśnić pochodzenie liniowych łańcuchów małych kraterów na powierzchni Phobosa. Położone są one mniej więcej równolegle do płaszczyzny jego orbity, czyli leżą prawie że w płaszczyźnie marsjańskiego równika. Tworzące je kratery w żadnym przypadku nie mogły powstać na skutek wtórnych uderzeń bloków skalnych, wyrzuconych podczas formowania się dużych kraterów pierwotnych. Łańcuszki kraterowe nie wybięgają bowiem od wielkich kraterów, a ponadto wyrzucone z nich bryły skalne przy swobodnym opadaniu z największej nawet wysokości osiągałyby — z uwagi na niewielką siłę cią­żenia Phobosa — za małą prędkość, aby mogły wybić niecki kraterowe. Biorąc to pod uwagę Soter doszedł do wniosku, iż wyrzucony podczas formowania się dużych kraterów materiał skalny mógł przede wszystkim kraczyć po orbicie około hoạchskiej, a dopiero później spaść na powierzchnię Phobosa. Siła uderzenia byłaby wówczas wznoszonej energią ruchu orbital-
nego księżyca i bryły skalnej. Jednak w ten sposób można wytłumaczyć pochodzenie pojedynczych kraterów wtórnych, które na powierzchniach marsjańskich księżyków rzeczywiście występują. Ale jak wytłumaczyć istnienie na Phobosie łańcuchów składających się z kilkudziesięciu kraterów o średnicach od 50 do 100 m?

Nie mniejszym zaskoczeniem dla planetologów było stwierdzenie, że powierzchnie księżyków Marsa pokrywa dość gruba warstwa kamiennego kruszywa, zwane regolitem. O jego obecności świadczą zarówno zdjęcia wykonane z bliska za pomocą członów satelitarnych ,,Vikingów”, jak i naziemne obserwacje polarymetryczne oraz pomiary temperatury w czasie zaćmienia Phobosa, wskazujące na występowanie na jego powierzchni materii o małym przewodnictwie ciepła. Takie właściwości wykazuje właśnie regolit, który niewątpliwie odpowiadający jest także za niskie albedo księżyków Marsa. Wydaje się zresztą, że występuje on również na innych małych ciałach Układu Słonecznego. Warstwą regolitu jest na przykład pokryta — jak to wykazały obserwacje teleskopowe w roku 1975 — powierzchnia planetoidy Eros.

Obecność regolitu na księżykach Marsa była jednak dla planetologów „twardym orzechem do zgryzienia”. Wydawało się wprost nieprawdopodobne, aby tak niewielkie ciała zdolne były utrzymać przy sobie warstwy drobnych kamieni i pyłu. Wszyscy raczej oczekiwali, iż będą one miały powierzchnie utworzone z nagich skał. Siła ciążenia marsjańskich księżyków jest przecież bardzo mała i według teoretycznych rozważań rozkruszył by upadające meteoryty materiał skalny w niezbyt sztywnych, dostatecznie duże prędkości, by wyrwać się z ich pola grawitacyjnego i umknąć w przestrzeń kosmiczną. A tymczasem warstwy regolitowe niezbieżne świadczą o tym, że przynajmniej część wyrzuconej z kraterów Phobosa i Deimos materia musiała z powrotem opaść na ich powierzchnie. Po prostu warstwa drobnych kamieni i pyłu — jak to uodwodniły badania laboratoryjne — amortyzują uderzenia meteorytów i w związku z tym tylko pewna ilość wyrwanej z księżyków materii mogła przewyciążyć ich siłę przyciągania. Ale i te okruchy skalne nie musiały się od nich zanadto oddalać, toteż po pewnym czasie mogły być przez nie wychwytywane. Dotyczy to zwłaszcza Deimos, który — jak się zdaje — ma grubszą warstwę regolitu niż Phobos. Ten bowiem krążą za blisko macierzystej planety i dlatego wyrzucony z jego kraterów materiał skalny musiał w krótkim czasie spaść na jej powierzchnię.
Przeprowadzone na modelu eksperymenty pozwoliły nie tylko poznać mechanizm tworzenia się warstwy regolitu na powierzchniach marsjańskich księżyców, ale wykazały również, że przypuszczalnie już w momencie swego powstania miały one nieregularne kształty. Ich masy bowiem od samego początku były niewielkie, toteż siła ciążenia okazała się za słaba na to, by przezwyciężyć siłę wiązań tworzącej je materii i nadać im sferyczne kształty. Ale chociaż księżyce Marsa są tak małymi ciałami, to jednak ich grawitacyjne wpływy ujawniły się podczas zbliżeń członów satelitarnych „Vikingów”. Na tej podstawie udało się wyznaczyć masę Phobosa na około 1,1 \times 10^{16} \text{ kg}, a ponieważ znamię też dość dobrze rozmiary jego elipsoidy (27 \times 21 \times 18 \text{ km}^3), przeto można było pokusić się o ocenę przybliżonej wartości tamtejszego przyspieszenia siły ciężkości. Jest ona oczywiście bardzo mała, mniej więcej tysiąc razy mniejsza niż na Ziemi. A zatem ciało swobodnie spadające na Phobosa w pierwszej sekundzie przebędzie zaledwie 5 mm, w drugiej — 20 mm, a w trzeciej — 45 mm. Aby zaś opuściło jego powierzchnię wystarczy wyrzucić je z prędkością 15 m/s.

Phobos ma około 5344 km^3 objętości, a jego średnia gęstość wynosi około 2200 kg/m^3, co odpowiada gęstości węglistych chondrytów typu I. Na tej podstawie planetolodzy sądzą, że pochodzi on z zewnętrznej części pasa planetoid, bo tam właśnie były najodpowiedniejsze warunki do tworzenia się tego rodzaju ciał. Ale i mniejszy Deimos składa się prawdopodobnie z materii przypominającej węgliste chondryty, chociaż typu III lub nawet IV. To zaś skłania niektórych badaczy do gloszenia niektórych badaczy do głoszenia poglądu, iż mógł on powstać w wyniku akrecji resztek materii, z której utworzył się glob Marsa. Jeszcze inni dla odmiany oba marsjańskie księżyce uważają za pierwotne planetoidy, poruszające się niegdyś po heliocentrycznych orbitach. Dopiero później miały być przechwycone przez glob Marsa, co rzekomo nastąpiło na skutek ingerencji trzeciego ciała już po uformowaniu się Układu Słonecznego. Ich rotacja — podobnie jak rotacja naszego Księżyca — jest zsynchronizowana z ruchem orbitalnym. Tak więc i marsjańskie księżyce zwracają ku macierzystej planecie stale jedne i te same strony swych globów. Na tej podstawie ocenia się, że Deimos

* Z materiałów otrzymanych za pomocą członu satelitarnego „Viking-2” wynika, że elipsoida Phobosa ma nieco mniejsze rozmiary niż to wskazywały materiały uzyskane przez aparatwę sondy „Mariner-9″.
obiega Marsa co najmniej od 10^6 do 10^8 lat, a Phobos od 10^4 do 10^6 lat. Są to po prostu niezbędne okresy wyhamowania obrotu jakiegoś ciała przez siły pływowe. Ale są pewne dowody na to, że Phobos i Deimos okrążają Marsa o wiele dłużej.

Warto wreszcie wspomnieć o wiekowym przyspieszeniu Phobosa, dające podstawę do przeróżnych spekulacji. Bardzo na przykład była popularna przed laty hipoteza Josipa S. Szklowskiego o sztucznym pochodzeniu księżyców Marsa. Dopiero badania przeprowadzone za pomocą ,,Mariner-9" wykazały, że są to bez wątpienia naturalne obiekty kosmiczne. Wiekowe zaś przyspieszenia Phobosa — tak jak przed laty sądził Mikołaj N. Pariskij — związane są z siłami pływowymi. One to hamują ruch księżyca, który krąży bardzo blisko Marsa, prawie że na granicy strefy Roche’a. Na skutek tego dostaje się on na coraz niższą orbitę, z coraz krótszym okresem obiegu, toteż jego ruch przyspiesza się o $0,01$ w ciągu roku. Jeżeli proces ten będzie dalej postępował w takim samym tempie, wówczas za około 100 milionów lat Phobos powinien spaść na Marsa. Przedtem jednak siły pływowe mogą go rozerać na drobne kawałki, z których wokół planety może wytworzyć się taki sam pierścień, jaki ma Saturn, Uran i — co niedawno ujawniły nam zdjęcia uzyskane za pomocą ,,Voyager-1” — także Jowisz.

KRONIKA

Z prac polskich astronomów w 1978 roku

Wzorem lat ubiegłych wymieńmy kilka spośród najciekawszych wyników badawczych uzyskanych ostatnio przez polskich astronomów. Do najbardziej zaszczytowych należy opracowanie przez B. Paczyńskiego (Centrum Astronomiczne im. M. Kopernika PAN) i współpracowników modelu dysku akrecyjnego otaczającego czarną dziurę z superkrytycznym tempem akrecji. Dysk taki jest grubościnny i w pobliżu czarnej dziury tworzy symetryczny wir, w którym strumień promieniowania jest ponadkrytyczny. Może to prowadzić do wyrzutu strug materii z prędkościami relatywistycznymi w kierunku osi rotacji. Pomyślne próby zastosowania tego modelu do wyjaśnienia natury źródeł aktywności jąder galaktyk i kwazarów, a także do niektórych źródeł promieniowania rentgenowskiego w naszej Galaktyce, oczekują potwierdzenia obserwacyjnego, aby stać się jedną z najdonioślejszych zdobyczy astronomii lat ostatnich.

J. P. Lasota (Centrum Astronomiczne im. M. Kopernika PAN) opracował model akrecji na silnie namagnesowanego białego karła z uwzględnieniem promieniowania cyklotronowego. Model ten może być
zastosowany do niektórych nowych karłowatych i nowopodobnych. Do­
brze również opisuje własności polara AM Her, dla którego wiele no­
nych danych obserwacyjnych uzyskał W. Krzemiński (Centrum
Astronomiczne im. M. Kopernika PAN). Polary są ciasnymi układami
gwiazd podwójnych, w których jeden ze składników (biały karzeł) po­
siada bardzo silne pole magnetyczne rzędu 200—300 Megagaussów. W.
Krzemiński stwierdził, że rotacja składnika magnetycznego jest syn­
chroniczna z obiegiem orbitalnym mimo zyskiwania przezeń znacznej
ilości momentu pędu niesionego przez padający strumień materii. Zna­
lął korelacje między polaryzacją, strumieniem promieniowania i jego
wskaźnikiem barwy. Korelacje te prowadzą do wniosku, że znaczna
część promieniowania opłyniętego i podczerwonego powstaje w bardzo
silnym polu magnetycznym w pobliżu biegunów magnetycznych białego
karła.

Niezmiernie skromne wyposażenie instrumentalne polskiej astrono­
mii zostało w ostatnich latach wzbogacone o dwa 60 cm teleskopy typu
Cassegraina firmy Carl Zeiss — Jena. Pierwszy zainstalowany został
w Obserwatorium Astronomicznym Uniwersytetu Warszawskiego
w Ostrowiku w 1973 roku (o czym donosiliśmy na łamach
Uranii w numerze z grudnia 1973 r.), a drugi jest własnością Instytutu Astronomi­
cznego Uniwersytetu Wrocławskiego i został uruchomiony w końcu
1977 roku w Białkowie. Za pomocą obu tych instrumentów wykonano
w ubiegłym roku wiele wartościowych obserwacji gwiazd zmiennych.
Np. analiza wykonana w Ostrowiku obserwacji układu podwójnego
BDS 1269 doprowadziła do lepszego zrozumienia pulsacji składnika typu
delta Scuti, a badania zmian okresu układu V 471 Tau mogły rzucić
światło na mechanizm stygmięcia białego karła. W Ostrowiku uzyskano
również serię obserwacji układu podwójnego nowej WZ Sge, która wy­
buchała w jesieni 1978 roku. W Białkowie prowadzono obserwacje foto­
elektryczne gwiazd zmiennych typu Beta Canis Maioris. Odkryto, że
gwiazda 16 Lac jest gwiazdą zaćmieniową o okresie 12.097 dnia, głębo­
kości zaćmienia 0.04 mag i czasie trwania zaćmienia około 0.4 dnia.
Jest to obecnie jedyna znana gwiazda typu Beta Canis Maioris w ukła­
dzie zaćmieniowym. Analiza periodogramowa obserwacji gwiazy 12 Lac,
w połączeniu z obserwacjami zmian profilu linii widmowych, pozwoliły
stwierdzić, że gwiazda ta jest powolnie rotującym oscylatorem nieradialnym,
w którym pobudzane oscylacje odpowiadają harmonikom sfe­
rycznym o dwu różnych wartościach.

Ciekawym wynikiem z zakresu mechaniki nieba jest powiązanie
przez G. Sitarskiego (Centrum Badań Kosmicznych PAN) jednym
systemem elementów orbity wszystkich obserwacji planetoidy Adonis,
która po odkryciu w 1936 roku ponownie zaobserwowana została do­
piero w 1977 roku (donosiliśmy o tym na łamach Uranii w numerze
lipcowym z 1977 roku). W pracy tej nie byłoby nic nadzwyczajnego
gdyby nie nieprzewidziane trudności rachunkowe spowodowane między
innymi dużym zbliżeniem się planetoidy do Wenus w 1964 roku. Trud­
ności tych nie zdołali pokonać astronomowie amerykańscy, którzy pier­
wsi próbowali poprawić orbitę Adonisa, wobec czego zwrócili się z proś­
bą o pomoc do polskich specjalistów. Rozwiązanie tego problemu jest
nie tylko osobistym sukcesem autora pracy, ale także potwierdzeniem
wysokiej klasy opracowanych w Polsce programów komputerowych,
ktoqe zostały przygotowane dla realizacji katalogu orbit komet jedno­
pojawieniowych.
Pierścień wokół Wenus?

Rezultaty obserwacji spektroskopowych przeprowadzonych przez sondy Wenera — 9 i 10 mogą być objaśnione istnieniem optycznie cienkiego pierścienia pylowego wokół Wenus. Całkowita masa pylu tworzącego pierścień powinna być sięgać około 20 ton. Masa odniesiona do jednostki długości pierścienia byłaby równa około 5×10^{-3} g/cm, przy maksymalnej gęstości pylu rzędu 10^{-17} g/cm3 dla pierścienia o grubości 100 kilometrów. Źródłem pylu może być mały księżyc Wenus, znajdujący się wewnątrz granicy Roche'a.

Z. PAPROTNY

Pierścienie wokół planetarne

Według R. Smoluchowskiego (1), systemy pierścieni wokół planet (Saturna, Urana, teraz prawdopodobnie również Jowisza), powinny — w kierunku radialnym — mieć nie tylko granicę zewnętrzną (granica Roche’a), ale również wewnętrzną. Zakłada się przy tym, że równocześnie z procesami wiodącymi do zmniejszania się rozmiarów cząstek pierścieni, istnieć mogą mechanizmy pozwalające na ich wzrost. Obliczenia, w których uwzględniono oddziaływania grawitacyjne, dośrodkowe i van der Waalsa wiodą do kokluzji, iż w przypadku Saturna teoretyczna granica wewnętrzna systemu pierścieni, w obszarze błędu identyczna jest z wewnętrzną granicą pierścienia C.

Z. PAPROTNY

Fotometria Amaltei

Odkryty przez Barnarda w 1892 roku najbliższy planecie księżyca Jowisza — Amaltea, jest obiektem trudnym do obserwacji ponieważ nawet w maksymalnej elongacji znajduje się bardzo blisko tarczy Jowisza. Dopiero niedawno udało się wykonać badania fotometryczne Amaltei w systemie UBV (1). Dokonał tego R. L. Mills pracujący w obserwatorium Lowell. Amaltea okazała się wyjątkowo ciemna — w systemie V jej albedo równe jest około 0,02. Składa się ona prawdopodobnie z materiału identycznego z chondrytami węglowymi — wyjątkowego materiału mgławicy protoplanetarnej. Wskaźnik barwy B — V Amaltei równy jest $1m^{50}$, co porównywalne z B — V $=1m^{37}$ dla Marsa świadczy o tym, że Amaltea jest najbardziej czerwonym obiektem w Układzie Słonecznym.

Z. PAPROTNY

Astronomiczny satelita IRAS

Wspólnym przedsięwzięciem Holandii, USA i Wielkiej Brytanii jest satelita IRAS (Infra Red Astronomical Telescope), którego start przewidziany jest na 1981 rok. Za jego pomocą przeprowadzony zostanie przegląd całego nieba w zakresie 8—120 mikrometrów. Znajdujący się na pokładzie satelity teleskop systemu Ritchey—Cretien o średnicy 60 cm, wykonany całkowicie z berylu, schłodzony będzie do 4 K. W płaszczyźnie ogniskowej znajdować się będzie mozaikowy system 62 odbiorników
IR, schładzony do 2 K oraz 4 bolometry nadprzewodnikowe i spektrometr o niskiej rozdzielczości. Toroidalny zbiornik ciekłego helu wystarczy na schładzanie elementów odbiorczych i teleskopu w czasie 1 roku. Pozwoli to na obniżenie progu szumowego do około 2×10^{-28} W/m²/Hz, co oznacza tysiącprocentowy wzrost czułości w porównaniu z osiągniętą dotychczas w tym obszarze widma elektromagnetycznego. Satelita IRAS dostarczy prawdopodobnie informacji o milionach nowych źródeł promieniowania podczerwonego, emitujących na falach dłuższych od 8 mikrometrów (w tej chwili znanych jest około 1000 takich źródeł).

Spaceview, vol. 8, nr 1, 1977, 36.

Teleskopy przyszłości

Na konferencji zorganizowanej w Genewie przez ESO (Europejskie Obserwatorium Południowe), poświęconej przyszłości teleskopów optycznych, dyskutowano metody zwiększenia efektywności instrumentów następnego pokolenia. Główne z wiodących do tego dróg to zwiększenie powierzchni efektywnej zwierciadeł, obniżenie ich masy oraz stosowanie układów wielozwierciadłowych w rodzaju już istniejącego MMT (Multiple Mirror Telescope). Grupa astronomów z obserwatorium Kitt Peak przedstawiła cztery projekty teleskopów nowej generacji (każdy gwarantujący aperturę ekwiwalentną 25 metrów): projekt typu podkowy zawierający segment bardzo dużego zwierciadła sferycznego, sterowana czaszą składająca się z mozaiki mniejszych luster, układ MMT z sześcioma teleskopami 10-metrowymi oraz układ zwany, „singles array”, w którym sześć 10-metrowych teleskopów zasilana wspólnie ogniwo Coulè. Rozpatrywano też projekty teleskopów z syderostatami oraz układ niezwiązanych ze sobą, identycznie wyposażonych teleskopów pracujących niezależnie lub obserwujących jeden obiekt. Na konferencji dużo uwagi poświęcono rozwojowi naziemnej optycznej techniki interferometrycznej, zapewniającej bardzo wysoką rozdzielczość otrzymywanych obrazów.

Kwazary a młode galaktyki

Hipoteza głosząca, iż aktywne procesy powstawania gwiazd zachodzą w całej objętości młodej galaktyki i to praktycznie równocześnie (bo w czasie rzędu 10^8 lat i mniej) zdaje się przeczyć rezultatom obserwacyjnym. Bardziej naturalnym — jak postuluje B. V. Komberg — jest założenie, że procesy gwiazdotwórcze obejmują najpierw jedynie centralne obszary protogalaktyki. Pod względem właściwości obserwacyjnych stadium to może odpowiadać właściwościami obiektu podobnego do kwazara. Uwzględniając to założenie można stworzyć schemat ewolucyjny, według którego radiokwazary przekształcają się z czasem w jądra radiogalaktyk. Przyjmuje się przy tym, że aktywność radiowa rozległych składników radiogalaktyk może utrzymywać się przez miliardy lat i zależy w ostatecznym rachunku od mocy radiowej ich jąder na etapie powstawania, to znaczy w stadium obiektu kwazaropodobnego. Z kolei promieniowanie optyczne takich obiektów znacznie słabnie już w czasie $10^7 — 10^8$ lat, po czym rozpoczyna się mogą procesy tworze-
nia gwiazd w pozostałojej objętości protogalaktyki, postępując od centrum ku peryferiom. Założenie, iż fenomen obiektu kwazaropodobnego jest burzliwym etapem rodzenia się jądra w protogalaktyce, nie przeci­
czy istniejącym obserwacjom fotoelektrycznym i spektralnym okolice bliskich kwazarów. Co więcej, postułał, by młodych galaktyk szukać w pobliżu kwazarów pozwala zrozumieć, dlaczego nie są one wykry­
wane z fluktuacji radiowego promieniowania tła, przy zastosowaniu metodyki, która nie uwzględnia żadnych silnych radioźródeł.

Kompleksy gwiazdne

Wykorzystując dane o rozkładzie cefeid galaktycznych wydzielono 35 kompleksów gwiazdnych, będących zgrupowaniami o średnicy około 800 paryseków i wieku rzędu dziesiątek milionów lat, zawierającymi gwiazdy powstałe w tym samym kompleksie pylowo-gazowym. Dys­
persja okresów cefeid sugeruje, że proces tworzenia się gwiazd w da­
nym kompleksie trwa 20—50 milionów lat. Być może, wszystkie młode gwiazdy i gromady związane są z tym czy innym kompleksem.

Ciasne układy podwójne a systemy planetarne

R. C. Fleck analizował niedawno właściwe momenty kątowe w zależ­
ności od masy całkowitej dla szeregu gwiazd pojedynczych o różnych typach widmowych, gwiazd podwójnych i układów planetarnych (1). Jego zdaniem ciasne układy podwójne i systemy planetarne mogą mieć wspólne pochodzenie, zaś powstawanie tych obiektów związane jest z rotacyjną niestabilnością pierwotnego zgęщения materii. Fleck sugeruje też, że prawdopodobieństwo istnienia układu planetarnego wokół gwiazd nie zależy od jej typu widmowego, w szczególności zaś systemy te mogą istnieć wokół gwiazd o typach wcześniejszych od F5. No­
wość tej koncepcji polega na tym, że dotąd za potencjalne słonca układów planetarnych uważa się gwiazdy o silnie spowolnionej rotacji (aż do około 10 km/s), przy czym granica dzieląca szybko i wolno robiące obrazy gwiazdy przebiega właśnie w obszarze typów F2—F5. Spowolnienie miałoby być rezultatem przeniesienia momentu kątowego obrotu osio­
wego gwiazdy do otaczającego ją systemu planet, co już w 1952 sugerował O. Struve (2). Analizując hipotezę pokrewieństwa układów pod­
wójnych gwiazd i systemów gwiazda — planeta, S. S. Kumar (3) do­
strzegł wyraźną różnicę między nimi, wyrażającą się w stosunku mas składników gwiazdowych w układach podwójnych (w granicach 1—10 typowo) a identycznym stosunkiem mas gwiazda — planeta (w Układzie Słonecznym zawsze powyżej 1000). Wyraźna jest też różnica w kształcie orbit: składniki układu podwójnego okrążają barycenter na orbicie ekscencycznych, planety zaś swoją gwiazdę centralną po praktycznie kołowych (przynajmniej siedząc po Układzie Słonecznym).

(2) Struve O., *Observatory*, vol. 72, 1952, 199.

Z. PAPROTNY
Powstawanie gwiazd w galaktykach

Korzystając z danych obserwacyjnych i obliczeń teoretycznych dotyczących ewolucji galaktyk, R. B. Larson (1) uzasadnia tezę, jakoby wszystkie galaktyki ciągu Hubble'a miały jednakowy w przybliżeniu wiek lecz bardzo różne tempo formowania gwiazd: wybuchowe (rzędu kilkudziesięciu milionów lat) w galaktykach eliptycznych i stacjonarne w galaktykach spiralnych i nieregularnych. Analizując charakterystyczne skale czasowe tych procesów dynamicznych, które mogą być inicjatorami formowania się gwiazd, autor dochodzi do wniosku, że jego tempo zdeterminowane jest ogólną gęstością materii galaktycznej, a nie gęstością gazu jak uważano przedtem. W pracy rozpatrzono procesy wtórnne, mające wpływ na szybkość powstawania gwiazd, takie jak: siły przypływowe, fale uderzeniowe, kolaps galaktyk czy w końcu dopływ gazu do obszaru, gdzie gwiazdy powstają. Przedyskutowano też testy obserwacyjne istniejących obecnie teorii ewolucji galaktyk i oceniono tempo powstawania gwiazd w galaktykach z katalogów Arpa, Hubble'a i de Vaucouleursa.

Z. PAPROTNY

OBSERWACJE

Raport II 1979 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 22,4 (127 MHz, 28 dni obserwacji) i 201,4 su (2800 MHz, 14 dni). Średnie miesięczne wskaźników zmienności — 0,39.
Wysoka aktywność Słońca, która rozpoczęła się we wrześniu ub. r., trwa nadal. W lutym zaobserwowano 31 zjawisk niezwykłych (w tym 14 burz szumowych) na częstości 127 KHz. 6 wielkich wybuchów wystąpiło w dniach 16, 17, 18 i 20 II. Najwyższy poziom osiągnął wybuch 47GB z dni 20 II — 3400 su (o godz. 851 UT).

Z toruńskich obserwacji na częstości 2800 MHz opracowano jedno zjawisko z dnia 1 II (maksimum strumienia 52 su o godz. 809 UT).

Toruń, 9 marca 1979 r.

K. M. BORKOWSKI, H. WEŁNOWSKI

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 2/79

Plamotwórcza aktywność Słońca w lutym 1979 r. była wysoka i utrzymywała się na poziomie miesiąca poprzedniego. Średnia miesięczna względna liczba Wolfa (month mean Wolf Number) za miesiąc

Luty 1979 r. R = 141,2

W lutym na widocznej tarczy Słońca zaobserwowano powstanie 31 nowych grup plam słonecznych. Wśród nich cztery grupy mocno rozbudowane z dużą ilością plam. Grupa nr 483 o maksymalnej zaobserwowanej powierzchni ok. 1600 jedn. w dniu 20 II zawierała 54 plamy. Liczby plamowe bardzo wysokie w środku miesiąca, dochodzące do R = 188, zmalały przy końcu miesiąca do R = 100.

Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc

Luty 1979 r. S = 1706 \times 10^{-6} p.p.s.

Dzienné liczby plamowe (Daily Wolf Numbers) w lutym 1979 r.:

Wiadomości: Z zadowoleniem informujemy, że do grona naszych obserwatorów dołączył się Pan Ulrich Bendel z Darmstadt (RFN) oraz Pan Peter Machata z Wiednia (Austria). Serdecznie witamy nowych Kolegów Obserwatorów Słońca.

Dąbrowa Górnicza, 8 marca 1979 r.

WACLAW SZYMAŃSKI
KRONIKA PTMA

Komunikat w sprawie Sekcji Historii Astronomii

PRZEMYSŁAW RYBKA

Jan Kasza z Rudy Śląskiej (16 VI 1922 — 15 VII 1978)

W lipcu ubiegłego roku pożegnaliśmy na zawsze naszego Kolegę Jana Kaszę z Rudy Śląskiej, członka — założyciela Gliwickiego Oddziału Polskiego Towarzystwa Miłośników Astronomii.

Był najbardziej wzorowym przykładem prawdziwego miłośnika astronomii.
Trzydzieści lat temu należał do szczupłego grona założycieli Gliwickiego Oddziału PTMA i od tego czasu nieprzerwanie pełnił funkcje sekretarza tego Oddziału. Charakteryzowała Go zawsze ogromna sistematyczność, dokładność i sumienność w każdej Jego pracy.

Własnym kosztem zmontował na stryszku w zabudowaniach gospodarczych w podwórzu rodzinnego domu w Rudzie Śląskiej — lunetę, która służyła dla pokazów nieba tak dla członków PTMA jak i dla innych różnych osób, dla młodzieży szkolnej i dorosłych. Był to stały punkt obserwacji astronomicznych Gliwickiego Oddziału PTMA, przyłączany w „Uranii” przy informacjach o poszczególnych Oddziałach.

Kolega Jan Kasza Swoje oszczędności przeznaczał na zakup książek i czasopism astronomicznych w języku polskim i niemieckim. Stworzył poważny księgozbiór, w którym znaleźć można wiele rzadkich cennych dzieł i ogromną ilość informacji z astronomii.

Utrzymywał żywy kontakt z wieloma miłośnikami astronomii w Kraju, jak również z paroma astronomami w NRD.

W barbórkową noc z 4-go na 5-go grudnia 1971 roku spotkała Go wielka przykrość. Nieznani sprawcy włamali się przez daszek do Jego Obserwatorium, zniszczyli je i wynieśli instrumenty. S. p. kol. J. Kasza potrafił obudować w ciągu dwóch lat swoje Obserwatorium i kontynuował dalej pokazy nieba. Na fotografii widzimy Go obok tej nowej lunety, posiadającej obiektyw 80 mm, ogniskową 500 mm i zaopatrzoną w szereg różnych okularów. Montaż paralaktyczny z obrotem, przy pomocy silniczka elektrycznego Siemensa.

Wszyscy aktywni koledzy z naszego Towarzystwa znali skromnego, cichego Kolegę Jana Kaszę z Rudy Śląskiej, który stale na Walnych Zjazdach Delegatów PTMA był proszony o przyjęcie funkcji Sekretarza Zjazdu.

ROMAN JANICZEK

NOWOŚCI WYDAWNICZE

Tytuł książki — Planety ponownie odkryte — doskonale zdaje sprawę z osiągnięć ostatnich lat astronomii i astronautyki. Loty międzyplanetarne tak ogromnie wzbogacili naszą wiedzę o planetach Układu Słonecznego, że w wielu przypadkach dotychczasowe poglądy na przyrodę, powstanie i ewolucję planet musiały zostać poddane surowej rewizji wymagającej częstokroć rezygnacji z różnego rodzaju fantastycznych wizji zaziemskich światów. Nie należy jednak tych wizji żałować — rzeczywistość okazała się bardziej fantastyczna, niż mogłoby to dopuścić nasza wyobraźnia — i o tym właśnie traktuje przedstawiana, nowa popularnonaukowa pozycja.
We Wstępie Autor daje krótki przegląd całego Układu Słonecznego — w aspekcie jego badania przy pomocy automatycznych sond międzyplanetarnych (co znakomicie roszerzyło możliwości astronomii i planetofizyki — dzięki obserwacjom przeprowadzanym z bliska oraz dzięki bezpośredniej eksplozacji ciał Układu Słonecznego).

Rozdział Na ekranie—Merkury podaje podstawowe dane o tej planecie, które były wiadome do czasu podjęcia badań radiolokacyjnych, a następnie — wysłania ku Merkuremu pierwszych automatycznych sond międzyplanetarnych. Dalej Autor opisuje fascynującą historię odkrycia rotacji Merkurego z innym niż uprzednio sądzono okresem (pozostającym wszelako w rezonansie z okresem ruchu orbitalnego), po czym przedstawia rezultaty tak niezwykłego w swoim rodzaju ruchu wirowego. L. W. Ksanfomaliti omawia także — dosyć szczegółowo — wygląd powierzchni Merkurego (dostępny pośrednio dla badań dzięki zdjęciom wykonanym i przekazanym przez sondę automatyczną „Meriner-10”) przeprowadzając jednocześnie porównania z wyglądem powierzchni Księżyca. Przedstawione również zostały warunki termiczne panujące na Merkurem, problem budowy wewnętrznej planety wraz z zagadnieniem istnienia wyraźnego pola magnetycznego, wreszcie dość dużo miejsca Autor poświęca atmosferze merkuriańskiej — bardzo rozprzedażnej i specyficznej.

Kolejne loty stacji międzyplanetarnych (połączone już zapewne z lądownictwem na powierzchni Merkurego) pozwolą dokładniej ustalić warunki panujące na planecie, lepiej poznać jej budowę, a ponadto do programu badań stacji lądujących na powierzchni Merkurego włączyć będzie można program obserwacji Słońca i przestrzeni okołosłonecznej.

Następny rozdział poświęcony jest planecie Wenus, przede wszystkim lądownictwu na tej zagadkowej planecie dwóch radzieckich sond kosmicznych „Wenera-9” i „Wenera-10”, które po raz pierwszy w historii astronomii przekazały na Ziemię obrazy powierzchni Jutrzenki szczelnie dotąd skrywane przed naszym wzrokiem wszędzie ciągłą warstwą chmur. Okazało się przy tym, że gęstość obłoków nie jest tak wielka, jak to wcześniej zakładano i powierzchnia planety jest zupełnie dostatecznie oświetlona, dzięki czemu na przekazanych panoramach można rozróżnić wiele szczegółów. Jeden ze znajdujących się w polu widzenia kamery kamieni ma tak osobliwy kształt, że zostało nawet wysunięte żartobliwe przypuszczenie, iż jest to być może przedstawiciel fauny Wenus. Rekonstrukcję „mieszkańca” Wenus podziwiać można na fotografii 12. Te rozważania o „faunie” Wenus są oczywiście marginesowe wobec zasadniczego tematu rozdziału o badaniach planety. Chociaż panoramy Wenus są same w sobie interesujące (pomijając już ich spektakularność), to jednak najważniejszym rezultatem lotów kosmicznych ku planecie Wenus jest poznanie i zbadanie (jeszcze niezupełne) składu i budowy atmosfery Wenus (wraz z obłokami, oczywiście). Autor starać się dać możliwie jak najpełniejszy obraz Wenus omawia również wyniki obserwacji radarowych planety (przeprowadzanych z Ziemi).

Brak miejsca nie pozwala na szersze przedstawienie rozdziałów — poza tym niewłaściwe byłoby pozbawiać Czytelnika przyjemności „samodzielnego” odkrywania planet, dlatego też pozostały rozdziały zostaną zaledwie zasygnowane, mimo iż są nie mniej ciekawe od dwóch pierwszych.

„Drugie odkrycie Marsa” — to brzmi jak tytuł opowiadania fantastycznego, których o Marsie napisano tysiące. A jedno z dłuższych opowiadań, pióra braci Strugackich, nazywa się... „Drugi najazd Marsjan".
Trzeba przyznać, że L. W. Ksantomaliti znakomicie strawestował w tym miejscu tytuł opowiadania Strugackich posługując się zupełną inwersją znaczeń. W samej rzeczy — rozdział ten to nie fantastyka, ale naukowo udokumentowana realność (lecz jeszcze bardziej od fantazji przyprowadzająca do zawróć głowy), a zamiast najazdu Marsjan mamy... „inwazję Vikingów” na Marsa (oraz statków radzieckich serii „Mars” i amerykańskich serii „Mariner”!

W rozdziale o Marsie Autor podaje nie tylko wyniki obserwacji i bezpośredniej eksplozacji planety, ale również znaczną część uwagi poświęca „geologicznej” przeszłości Marsa podsumowując zarazem prze­wijające się przez wszystkie trzy rozdziały problemy kosmogonii planet typu ziemskiego oraz ich naturalnych satelitów.

Rozdział „Na drodze po tajemnice Jowisza” zaznajamia Czytelnika z odkryciami dokonanymi przez radioastronomów oraz przez amerykańskie sondy serii „Pioneer”, które przekazały na Ziemię wiele cennej informacji o planetce-gigancie i jej satelitach — informacji zarówno w postaci obrazów jak i wyników bezpośrednich pomiarów wielkości fizycznych zjawisk rozgrywających się w bliskim sąsiedztwie planety, a w głównej mierze dotyczących stanu zewnętrznych warstw atmosfery, magnetosfery i związanych z nią pasów radiacyjnych Jowisza. Zwiększył się też dzięki „Pioneerom” nasz zasób wiedzy o czterech galileuszowych satelitach Jowisza.

Dwa kolejne rozdziały stanowią swego rodzaju niespodziankę w kalejdoskopie niespodzianek, które obruszyły się na nas z chwilą wsparcia naziemnych obserwacji lotami statków kosmicznych niosących na pokładach aparaturę umożliwiającą śledzenie i badanie innych światów z bliska, zaś w przypadku Wenus i Marsa — pozwalających również na bezpośrednią ich eksplozację. Tak tedy rozdział Paradoxky asteroidów przedstawia zadziwiający świat planetek, owych drobnych ciał niebieskich zajmujących przestrzeń głównie pomiędzy orbitami Marsa a Jowisza. Rezultaty obserwacji i obliczeń wykonanych w ostatnich latach pozwoliły ustalić, iż planetki nie są produktem rozpadu jednej dużej planety, ale stanowią raczej ten najdawniejszy, pierwotny materiał tworzący planetozyme, z których następnie powstawały planety. Perturbacje ze strony Jowisza uniemożliwiły powstanie w rejonie pomiędzy orbitami Marsa a Jowisza (jak to przewiduje reguła Titiusa-Bodego) jeszcze jednej planety — co więcej perturbacje spowodowały dodatkowo fragmentację istniejących planetozymów; stąd mamy planetki... meetyory (o różnym składzie chemicznym i różnej budowie). Nie wszystko jest jednak w tym schemacie do końca wyjaśnione. Istnieją wszak meetyory — pozostałości po kometach, a z kolei przyroda i pochodzenie komet stanowi nadal zagadkę... Niespodzianki, paradoxy.

Zupełnie innego rodzaju niespodziankę w przedstawianej książce jest rozdział zatytułowany Nieco o problemach głównej planety. Główna planeta — to nasza Ziemia, może nie najgłówniejsza we Wszechświecie, ale bardzo ważna dla ludzi. Autor roztańca ponurą wizję możliwości zagłady życia na Ziemi już nawet nie z powodu wojen, lecz wywołaną niejako mimowolnie poprzez systematycznie wzrastające naruszanie systemów ekologicznych Planety, co ludzkość uświadomiła sobie w pełni całkowicie niedawno. Rozwój przemysłu i komunikacji prowadzi do zacznijniania równowagi klimatycznej i ekologicznej w skali całej planety. Atmosfera, biosfera, równowaga energetyczna planety nie nadają się w procesie samoodtwarzania za działalność człowieka — odwieczne cykle utrzymujące w globalnej skali stabilność warunków naturalnych
na Ziemi są raz po raz zakłócone ingerencją człowieka, nieprzemysłową i przez to szczególnie niebezpieczną. Autor przytacza opinie optymistów i katastrofistów, jak długo jeszcze bezkarnie możemy eksploatować Ziemię, ale nawet optymistyczne oceny są przerażające! Pisząc ten rozdział Ksanfomaliti pragnął niejako ostrzec odpowiedzialne czynniki, iż nasze wspaniałe plany wypraw kosmicznych mogą się gwałtownie zahałać, jeśli nie zadbamy w porę o macierzystą planetę — wtedy skończy się nasz sen o potędze...

Ostatni rozdział — Automaty nie znają wątpliwości — jest przeglądem techniki astronauptycznej, na przykładach aparatury wykorzystywanej w procesie poznanawania Układu Słonecznego. Omówione zostały metody przeprowadzania przez statki kosmiczne badań i obserwacji planet, metody, które w ostatnich latach zaczęto nazywać teledetekcyjnymi, a które są pochodnymi naziemnych obserwacji planet. Tytuł artykułu zwraca uwagę na ten ważny fakt, że automatyczne sondy międzyplanetyczne wykonują tylko to, co zostało przewidziane programem — i nic ponadto. Stanowi to słajną stronę wypraw bezzałogowych. Z drugiej strony jednak wyprawy takie są ekonomicznie i... bezpieczniejsze, co znalazło jaskrawe potwierdzenie w przypadku lądowania na Wenus. Bezpośrednie lądowanie statku załogowego, bez przeprowadzenia uprzedniego rekonesansu, mogłoby się zakonczyć tragicznie dla astronautów. Nikt zresztą już dziś nie sądzi, żeby wyprawy załogowe do dalekich światów zaziemskich wyruszały na oślep. Tak więc chociaż możliwości sond automatycznych są ograniczone, to jednak stanowią one niezbędną awanгарdę przed bezpośrednim udziałem człowieka w Wielkiej Przygode Kosmicznej.

T. ZBIGNIEW DWORAK

KALENDARZYK ASTRONOMICZNY

Opracował G. Sltarski

Sierpień 1979 r.

Słońce

W sierpniu Słońce wstępuje w znak Panny i jego długość ekleptyczna wynosi wówczas 150°. Dni są coraz krótsze: w Warszawie 1 sierpnia Słońce wschodzi o 4h55m, zachodzi o 20h28m, a 31 sierpnia wschodzi o 5h44m, zachodzi o 19h28m.

W dniu 22 sierpnia zdarzy się obrączkowe zaćmienie Słońca, w Polsce niewidoczne. Zaćmienie widoczne będzie na półkuli południowej.

Dane dla obserwatorów Słońca (na 14h czasu wschod.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₆</th>
<th>L₆</th>
<th>Data 1979</th>
<th>P</th>
<th>B₆</th>
<th>L₆</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIII 1</td>
<td>+10°79</td>
<td>+5°80</td>
<td>157°20</td>
<td></td>
<td>VII 17</td>
<td>+16°66</td>
<td>+6°74</td>
</tr>
<tr>
<td>3</td>
<td>+11.58</td>
<td>+5°94</td>
<td>130.76</td>
<td>19</td>
<td>+17.31</td>
<td>+6.83</td>
<td>279.22</td>
</tr>
<tr>
<td>5</td>
<td>+12.36</td>
<td>+6°08</td>
<td>104.30</td>
<td>21</td>
<td>+17.94</td>
<td>+6.91</td>
<td>252.79</td>
</tr>
<tr>
<td>7</td>
<td>+13.12</td>
<td>+6°20</td>
<td>77.86</td>
<td>23</td>
<td>+18.56</td>
<td>+6.98</td>
<td>226.36</td>
</tr>
</tbody>
</table>
Księżyc

Ciemne, bezksiężycowe noce będziemy mieli w drugiej połowie miesiąca, bowiem kolejność faz Księżyca jest w sierpniu następująca: pierwsza kwadra 15h8, pełnia 8h5, ostatnia kwadra 14d21h, nów 22d19h i znów pierwsza kwadra 30d20h. W perygeum Księżyca znajdzie się 8, a w apo­geum 23 sierpnia. W sierpniu tarcza Księżyca zakryje Aldebarana, gwiazdę pierwszej wielkości w gwiazdozbiorze Byka (zjawisko to będzie u nas niewidoczne).

Planety i planetoidy

W sierpniu mamy dobre warunki obserwacji Merkurego, zwłaszcza w drugiej połowie miesiąca. Odnajdziemy go rankiem nisko nad wschodnim horyzontem jako gwiazdę około zerowej, a pod koniec sierpnia w północy jako gwiazdę +1.5 wielkości w gwiazdozbiorze Byka. Uran widoczny jest wieczorem w gwiazdozbiorze Wagi (6 wielk. gwiazd.), a Neptun w pierwszej połowie nocy w gwiazdozbiorze Wężownika (8 wielk. gwiazd.). Wenus, Jowisz, Saturn i P 1 u t o n są niewidoczne.

Przez lunety nadal możemy obserwować planetoidę Pallas jako słabą gwiazdkę około 10 wielkości (zmieniającą swoje położenie na niebie) na granicy gwiazdozbiorów Pegaza i Delfina. Podajemy rektascensję i deklinację planetoidy dla kilku dat: 1d: 21h19m6, +13°39' ; 11d: 21h11m9, +12°23' ; 21d: 21h4m3, +10°47' ; 31d: 20h57m3, +8°54' .

Meteory

W pierwszej połowie sierpnia promieniują dwa roje meteorów: jota Akwarydy (maks. 6 sierpnia) i Perseidy (maks. 13 sierpnia). Akwarydy mają podwójny radiant w gwiazdozbiorze Wodnika: rekt. 22h32m, dekl. —15° i rekt. 22h4m, dekl. —6°. Rój nie jest obfity i możemy się spodziewać spadku zaledwie kilku meteorów w ciągu godziny. Nato­miast Perseidy, których radiant leży w gwiazdozbiorze Perseusza i ma współrzędne: rekt. 3h4m, dekl. +58°, jest rojem znacznie bogatszym i możemy zaobserwować nawet kilkadziesiąt meteorów w ciągu godziny. Niestety, warunki obserwacji nie są w tym roku korzystne (pełnia).
1022h Uran w złączaniu z Księżykiem w odl. 5°.
4d7h Złączenie Neptuna z Księżykiem w odl. 4°.
10d14h Merkury nieruchomy w rektaescencji.
13e11h Złączenie Jowisza ze Słońcem.
16d6h Bliskie złączenie Księżyka z Aldebaranem; zakrycie gwiazdy przez tarczę Księżyka widoczne będzie w Północnej Afryce, południowo-wschodniej Europie i w południowej Azji.
17d3h Planetoida Pallas w przeciwstawieniu ze Słońcem.
18d10h Mars w złączaniu z Księżykiem w odl. 5°.
19d6h Merkury w największym zachodnim odchyleniu od Słońca (19°).
21d4h Merkury w złączaniu z Księżykiem w odl. 2°. Rankiem nad wschodem horyzontem obserwujemy Merkurego i wąski sierp Księżyka.
22d1h Obrączkowe zaćmienie Słońca, niewidoczne w Polsce. Zaćmienie widoczne będzie w Ameryce Południowej i na Antarktydzie.
23d19h38m Słońce wstępuje w znak Panny.
25d14h Górné złączenie Wenus ze Słońcem.
29d5h Uran w złączaniu z Księżykiem w odl. 5°.
30d O 13h Merkury w złączaniu z Jowiszem w odl. 0°7. O 17h Neptun nieruchomy w rektaescencji.
31d15h Neptun w złączaniu z Księżykiem w odl. 4°.

Minima Algola (beta Perseusza): sierpień 2d0h20m, 4d21h5m, 7d18h0m, 19d5h10m, 22d2h0m, 24d22h55m, 27d19h40m.

Momenty wszystkich zjawisk podane są w czasie wschodnio-europejskim (czasie letnim w Polsce).

Zakrycia gwiazd przez Księżyka

<table>
<thead>
<tr>
<th>Data UT</th>
<th>Nr, nazwa i jasność gw., zjawisko</th>
<th>Moment (minuty) i kąty pozycyjne (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>VIII 13d24h</td>
<td>5803 μ Cet 4,4 p</td>
<td>50,4</td>
</tr>
<tr>
<td>13 25</td>
<td>5804 μ Cet 4,4 k</td>
<td>53,0</td>
</tr>
<tr>
<td>15 23</td>
<td>5805 71 Tau 4,6 k</td>
<td>—</td>
</tr>
<tr>
<td>15 23</td>
<td>5806 Ω2 Tau 3,6 p</td>
<td>47,6</td>
</tr>
<tr>
<td>15 24</td>
<td>5807 Ω2 Tau 3,6 k</td>
<td>18,3</td>
</tr>
<tr>
<td>15 25</td>
<td>5808 80 Tau 5,7 k</td>
<td>04,9</td>
</tr>
<tr>
<td>15 25</td>
<td>5809 81 Tau 5,5 k</td>
<td>21,8</td>
</tr>
<tr>
<td>15 26</td>
<td>5810 85 Tau 6,0 k</td>
<td>03,7</td>
</tr>
<tr>
<td>16 25</td>
<td>5811 111 Tau 5,1 k</td>
<td>52,0</td>
</tr>
<tr>
<td>17 24</td>
<td>5812 124H Ori 5,7 k</td>
<td>—</td>
</tr>
</tbody>
</table>

Zròdło: Rocznicz Astronomiczny Obserwatorium Krakowskiego. Podane wartości A_p i A_s są średnimi dla miast: Poznań (P), Wrocław (Wr), Toruń (T), Kraków (K) i Warszawa (Wa). p i k oznacza początek wzgl. koniec zjawiska zakrycia. Momenty w czasie uniwersalnym.

Efemerydy punktów Lagrange’a L4 i L5 w układzie Ziemia—Księżycka dla obserwacji Pyłowych Księżyków Ziemi oraz punktów libracyjnych w układzie Słońca—Wenus dla ułatwienia poszukiwań ewentualnych
cial, jakie mogą się w tych punktach znajdować, zamieszczone są w Roczniku na str. 133—136 oraz w „Cracow Observatory Reprint No 122” (tu także przewidywane momenty zaćmień Pyłowych Księży-ców Ziemi oraz zakryć przez nie Jowisza).

L. ZAJDLER

Adresy Oddziałów PTMA (stan na 1 VII 1979 r.

41-300 Dąbrowa Górnicza — ul. 3 Maja 4/15, (p. Wacław Szymański)
39-200 Dębica — skr. poczt. 11 (p. Józef Rokoszak)
14-530 Frombork — ul. Elbląska 2, „Wieża Wodna” (p. Jan Pogorzelski)
80-844 Gdańsk — ul. Podwale Staromiejskie 93/4, (Doc. dr Andrzej Lisicki)
44-100 Gliwice — ul. Konopnickiej 2/2, (mgr inż. Władysław Gisman)
tel. 91-53-73
86-300 Grudziądz — ul. Krasickiego 5, Planetarium i Obs. Astr. tel. 27-94
41-501 Katowice-Chorzów — Planetarium WPKiW, skr. poczt. 10, tel. 58-51-49
25-725 Kielce — ul. Sienna 28 (p. Andrzej Letkowski), tel. 525-29
31-027 Kraków — ul. Solskiego 30/8, tel. 238-92
38-400 Krośnie n/W — ul. Nowotki 1 (p. Jan Winiarski)
90-113 Łódź — ul. Konstantyja 42 bl. 5/25 (mgr inż. Edward Kowal)
33-300 Nowy Sącz — ul. Śnieżnych 6/10
10-450 Olsztyn — Al. Zwycięstwa 38, PLK, tel. 59-51
45-081 Opole — ul. Piastowska 21a/6 (p. inż. Stefan Czech)
27-400 Ostrowiec Św. — Os. Słoneczne 8/37 (p. Jerzy Ulanowicz)
61-772 Poznań — Stary Rynek 9/10
24-100 Puławy — ul. Krasińskiego 17/23 (p. Bogdan Szewczyk), tel. 27-33
26-607 Radom — ul. Zeromskiego 75 p. 303a (inż. Piotr Janicki)
71-607 Szczecin — ul. Słowackiego 17, Akad. Rolnicza (dr Stanisław Gwizdek)
87-100 Toruń — ul. Kopernika 42, tel. 228-46
00-716 Warszawa — ul. Bartycka 18 CAMK, (p. Zygmunt Grela)
50-082 Wrocław — ul. Piota Skargi 18a, tel. 347-32
65-246 Zielona Góra — ul. Podgórna 50, Zakł. Fizyki WSI (Doc. dr Napoleon Maron)

Adresy Sekcji PTMA

43-392 Międzychód Górne 44 (Ks. dr Tadeusz Kloczek), woj. Bielsko-Biała, tel. 755-70 (Oddz. Kraków)
46-040 Ożimek — ZDK Huty „Małapanew” (inż. Feliks Luer), tel. 968 hud. 169 (Oddz. Opole)
09-400 Płock — ul. Płońskiego 1/7 (inż. Edward Haman), Oddz. Warszawa
83-400 Kościelna — ul. Świerczewskiego 6/5 (mgr Karol Brzeziński)
85-438 Bydgoszcz — ul. Wyrzycka 26/30 (p. Zbigniew Bienienda)
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.

K. Ziolkowski — Cosmic investigations in Poland.

S. R. Brzostkiewicz — Moons of Mars in the light of the newest investigations.

Observations.

PTMA Chronicle.

New books.

Astronomical Calendar.

OGŁOSZENIE

Sprzedam komplet fabrycznej optyki do teleskopu Newtona.

Bronisław Szewczyk
ul. Stanisława 4
40-014 Katowice

Indeks 39001
Indeks 38001
Przed astronomami-amatorami otwiera się nowa perspektywa obserwacji o cennej wartości dla nauki o budowie naszego Układu Planetarnego: obserwacje zakryć gwiazd przez planetoidy. Sprawie tej poświęcony jest artykuł astronoma amerykańskiego P. D. Maleya. Tym spośród naszych obserwatorów, którzy zamierzalioby wziąć w przyszłości w tej akcji czynny udział — na razie kompletując sprzęt i zaprawiając się do obserwacji — przypominamy, że nadchodzące miesiące będą bogate w „zwykłe” zakrycia gwiazd przez Księżyc: w sierpniu — 10, we wrześniu — 12, w październiku naprawdę tylko 8, ale w listopadzie — aż 24! Zachęcamy również licznych w naszym kraju obserwatorów gwiazd zmiennych.

Kronika historyczna: Leopold Matkiewicz.
Nowości wydawnicze.
Kalendarzyk astronomiczny.
Zakrycia gwiazd przez Księżyc
Od redakcji: Pracę pt. „A plan for intercepting Asteroid Occultation shadows” nadesłał Autor (Paul D. Maley, 15807 Brookvilla, Houston, Texas 77059, USA) w postaci maszynopisu w języku angielskim wraz z kserograficznymi kopiami trzech rysunków (mapki) których z przy­czyn technicznych nie reprodukujemy. Artykuł przeznaczony jest w oryginałe głównie dla czytelników — astronomów-amatorów — na terenie Stanów Zjednoczonych, toteż zastosowaliśmy tu (niewielkie zresztą) skróty. Sam temat był już poruszony w artykule M. Zawilskiego „Wy­korzystanie obserwacji zjawisk typu zaćmienia” (Urania nr 9, wrzesień 1978, str. 270) i zwracamy nań szczególną uwagę naszych obserwatorów. Przy okazji informujemy, że rozważany jest projekt powołania Sekcji Obserwacji Zjawisk Zaćmieniowych, która powinna by zająć się opracowaniem efemeryd zakryć gwiazd przez planetoidy, może przy współ­pracy z Autorem nin. artykułu.

Obserwacje zakryć gwiazd przez planetoidy — to nowa, inter­esująca dziedzina zarówno dla astronomów profesjonalnych, jak i dla amatorów. Odkrycie w 1978 r. satelitów planetoid Herculiny i Melpomene świadczy o możliwości istnienia nowej subpopulacji drobnych ciał, okrążających przynajmniej więk­sze spośród planetoid. Sprzet obserwacyjny do tego celu jest taki sam, jak do obserwacji innych zakryć: magnetofon dla zapisu uwag obserwatora, radioodbiornik sygnałów czasu oraz luneta z aperturą minimum 4 cali (ok. 10 cm).

Pierwszą zapowiedź o możliwym zakryciu można uzyskać już na kilka miesięcy przed terminem, ale dokładną efemerydę otrzymać można dopiero na kilka dni przed aktualnym termi­nem zjawiska, po prześledzeniu ruchu planetoidy na tle gwiazd, najlepiej po dokonaniu pomiaru współrzędnych na kli­sach astronomicznych. Wtedy można wyznaczyć współrzędne przebiegu cienia planetoidy na Ziemi (źródłem światła jest gwiazda) z wymaganą dokładnością rzędu 0"01.

Głównym celem obserwacji tych zakryć jest zebranie da­nych umożliwiających wyznaczenie poprawnej średnicy pl­anetoidy, określenie jej kształtu, a także ustalenie ewentu­alnego istnienia jej niewidocznych satelitów (parasatelitów). Dla osiągnięcia celu wymagane jest prowadzenie obserwacji na możliwie dużym obszarze. Nie uzyskamy tego z obserwacji w obserwatoriach profesjonalnych, o stałej lokalizacji, a nie­wiele jest takich, które dysponują sprzętem przenośnym. Toteż astronomowie zawodowi, posługujący się dziś przeważnie in-
instrumentami fotoelektrycznymi, tylko w nielicznych przypadkach biorą udział w tego typu obserwacjach. Jak widać, dziedzina ta jest jakby specjalnie domeną astronomów-amatorów, posługujących się środkami do obserwacji wizualnych.

Rozmieszczenie większości miłośników astronomii w kraju ma charakter na ogół przypadkowy, niekiedy tylko skupieni bywają w miastach. Często nie wiedzą, że w sąsiedztwie inni prowadzą podobne obserwacje. Może się również zdawać, że stanowiska swe lokalizują na wspólnej trasie i bezwiednie powtarzają tę samą pracę.

Przedstawiam tu plan organizacji obserwacji, określając stanowiska obserwatorów na z góry ustalonych liniach równoległych do trasy cienia planetoidy, we wzajemnych odległościach ok. 33 km (20 mil). Na każdej z tych linii powinien znajdować się jeden lub dwóch obserwatorów; jeśli dwóch — to w odległości poniżej 2 km (1 mila) od siebie, a to dlatego, by można było uzyskać potwierdzenie ewentualnych podwójnych zakryć, które zaszłyby w przypadku istnienia satelity planetoidy. Obserwatorzy powinni w takim przypadku działać w porozumieniu ze sobą i ustalić swe stanowiska. Pożądane jest, by obsadzić wszystkie linie cienia (wykreślone przedtem na mapie), a w tych miejscowościach, w których znajdują się ośrodki astronomów profesjonalnych, wskazane jest współdziałanie z astronomami. Jeśli obserwatorów jest dostatecznie wielu, należałoby ich rozmieścić na obszarach pomiędzy liniami (np. w odległości połowy, 1/4 lub 3/4 odstępu między nimi), by zagęścić rozkład. Dobrze by było, gdyby takie otoczenie wybranej linii powierzyć opiece jednego z obserwatorów, który byłby odpowiedzialny za przygotowanie obserwacji.

Autor gotów jest dostarczyć odpowiednie mapy nieba na dwa miesiące przed terminem zakrycia, co umożliwi obserwatorowi przygotowanie się. Jedna z map — to wycinek z „Norton’s Star Atlas” o małej skali, która umożliwia zapoznanie się z odpowiednim obszarem nieba. Druga — to mapa z atlasu SAO (Smithsonian Astrophysical Observatory Star Catalogue), zawierająca już gwiazdy poniżej 7 wielkości. Trzecia mapa — to mapa geograficzna, na której zaznaczony jest rozkład linii przebiegu cienia planetoidy. Dokładność tej mapy jest niewielka, współrzędne określić z niej można zaledwie do ok. 4 km (2 mile). Dokładniejsze znajdziemy na mapach o większej skali. Stanowisko obserwatora powinno być wyznaczone w odniesieniu np. do skrzyżowania dróg, jako dość dokładnie wyznaczonych na mapach, przy czym należy posługiwać się przy-
miarami wstęp Gowymi (taśma 20-metrowa), użycie np. drogonierza samochodowego nie zapewnia wymaganej dokładności.

Orby planetoid nie są dokładnie znane i czasem możliwe jest pominięcie planetoidy ze słabą gwiazdą w polu widzenia teleskopu. Zakryciu ulegają zazwyczaj gwiazdy słabe, o wielkości 8 do 10 mag. Ponieważ wielu astronomów-amatorów nie ma wprawy (o ile nie obserwują systematycznie gwiazd zmiennych) w odszukaniu słabych obiektów gwiazdowych, powstaje koncepcja dwóch stanowisk. Doświadczyony obserwator R będzie pracował z niedoświadczonym S. R ustawi teleskop obserwatora S na właściwe pole na niebie, po czym zajmie stanowisko przy swoim instrumencie. Pole widzenia dla rejestracji zakryć powinno wynosić około jednego stopnia.

Przygotowując się do obserwacji należy za wczas obliczyć wysokość gwiazdy nad lokalnym horyzontem, by uniknąć przeszkód jak gór lub drzewa przysłaniające pole obserwacji. Inaczej należy przenieść stanowisko.

Gdy mająca ulec zakryciu gwiazda została odnaleziona, rozpoczyna się właściwa obserwacja. Od chwili poprzedzającej przewidziany moment centralnego zakrycze o 5 minut obserwator czuwa przy lunecie. Przedtem należy upewnić się, że magnetofon i radioodbiornik działają sprawnie. Zdarza się, że lepszy odbiór uzyskuje się przez podniesienie odbiornika o kilka metrów nad ziemię, niekiedy sąsiedztwo przewodów wysokiego napięcia powoduje problemy z radioodbiornikiem. Wskazane jest, by obserwator znajdował się na miejscu na 2 godziny wcześniej, sprawdzając działanie instalacji, dobiegając odpowiednie ustawienie mikrofonu magnetofonowego, jak również dla optymalnego ustawienia się przy lunecie.

Na 15 minut przed zakryciem obserwator powinien odnotować następujące szczegóły:

1. Nazwisko obserwatora i wszystkich osób na stanowisku.
2. Typ instrumentu, rodzaj montażu, ewent. mechanizm zegarowy.
4. Dane i numer linii cienia.
5. Ewentualne uwagi o miejscu obserwacji.
6. Warunki obserwacji.

W czasie obserwacji zakrycia obserwator powinien nieprzerwanie komentować przebieg zjawiska. Słowo „nieprzerwanie” należy podkreślić, ponieważ nawet podczas dobrych warunków widzialności przebieg obserwacji może być zakłócony zmiana-

W czasie obserwacji należy szczególnie unikać mrużenia oczu lub tarcia ich. Jeśli to jednak nastąpi, powinno to być odnotowane na taśmie. Jeśli teleskop zostanie potrącony lub gwiazda ucieka z pola widzenia (co wymaga poprawienia pozycji), trzeba to również zasygnalizować. Częstym zagrożeniem są zakłócenia od zbliżających się pojazdów. Obserwator powinien zadbać o zminimalizowanie takich przeszkód podczas ustawiania teleskopu.

Szczególnie ważne są dostrzeżenia zmian jasności gwiazdy w okresie oczekiwania na zakrycie, ponieważ pozwalają na określenie granic przejścia planetoidy wzgl. jego satelity. Pojedynczy obserwator może wprawdzie otrzymać dowód na istnienie ciała towarzyszącego na wokółplanetoidalnej orbicie, jednak zamierzeniem naszym jest zebranie takich dowodów ze skompletowania materiałów dwóch lub więcej obserwatorów.

Obserwator powinien szybko reagować na wszelkie zmiany wyglądu gwiazdy, wyraźnie wymawiając słowa „znikać”, „przygasać”, „ponowne ukazanie się” itp. i dokładnie je przekazywać przez mikrofon.

Dla celów szkoleniowych dobrze jest skonstruować aparatę symulującą przebieg zakrycia. Można do tego celu użyć dwóch rzutników przezroczysty, z których jeden zawiera fotografię pola gwiazd, drugi — „sztuczną planetoidę” (folia aluminiowa z otworkiem dokonanym np. igłą). Odpowiednie rzu- towanie na ekran obrazów z obu rzutników pozwoli potencjalnym kandydatom na obserwatorów zobaczyć, czego należy się spodziewać podczas zakrycia. Instruktor utrzymuje kontrolę zmian jasności gwiazdy, od całkowitego zniknięcia do drgań, powodując m. in. zmiany szybkie lub stopniowe. Stosowałem tę metodę z dużym powodzeniem w Houston przy treningu niedoświadczonych obserwatorów zakryć brzegowych gwiazd przez Księżyc.

Obserwacje zakryć gwiazd przez planetoidy są szczególną gałęzią astronomii teleskopowej, która wymaga przygotowaw-
czego treningu, podobnie jaki jest niezbędny przy szkoleniu obserwatorów gwiazd zmiennych, a to dlatego by zaznajomić obserwatora z ocenianiem jasności gwiazd. Najlepsze jednak przygotowanie do wykrywania charakterystycznych fluktuacji jasności daje uprzednie doświadczenie w obserwacjach całkowitych i stykowych (brzegowych) zakryć przez Księżyc. Te ostatnie występują gdy zakrycie zachodzi po stycznej do północnego lub południowego brzegu tarczy Księżyca; gwiazda wtedy może zniknąć i powtórnie pojawiać się na skutek nierówności brzegu Księżyca (góry i doliny). W czasie takich zakryć występują jakby migotania gwiazdy, zmiany następujące bardzo szybko.

Dodatkowe informacje o sztuce obserwowania zakryć można uzyskać pisząc do International Occultation Timing Association, P.O. Box 596, Tinley Park, Illinois 60477. Natomiast pytania dotyczące przedstawionego planu należy kierować pod adresem autora.

Tłum. Jolanta Zarnowska

* W przeciwieństwie do zaćmień Słońca a zwłaszcza Księżyca, w których to przypadkach zjawisko może być obserwowane na wielkim obszarze, zakrycia gwiazd przez planetoidy występują w wąskim pasie i trwają zaledwie sekundy. Obrazowo — choć niezupełnie ściśle — można powiedzieć, że obszar widoczności i czas trwania tego zjawiska są tyle razy mniejsze od obszaru i czasu trwania zakrycia gwiazd przez Księżyca, ile razy średnica planetoidy jest mniejsza od średnicy tarczy Księżyca. O powodzeniu obserwacji decyduje więc właściwe usytuowanie się obserwatora na Ziemi. Z publikowanych w Uranii efemeryd zakryć gwiazd przez Księżyca widać już, że nie wszystkie są obserwowalne na terenie całego kraju.

Sporządzenie nawet przybliżonych efemeryd ze wskazaniem obszaru widzialności przerażające możliwości przeciwnego miłośnika astronomii, toteż ich przygotowanie powinny powinny „specjaliści” z projektowanej Sekcji, o której mowa we wstępie do powyższego artykułu.

Załączona do maszynopisu Autora mapa obejmuje obszar kilku stanów USA (Teksas, Oklahoma, Arkansas, Louisiana), porównywalny z obszarem Polski. Jest on podzielony równoleżnikami równoleżnikami liniami na 30 stref (numerowanych).

Dokładnie obszaru widzialności danego zakrycia przewidzieć się za wczasy nie da, a to głównie dlatego, że na ogół brak definitywnych elementów orbit planetoid. Toteż obserwatorów należy rozlokować w kilku zaznaczonych na mapie (na stałe) strefach — jak to wskazuje Autor artykułu. Ponieważ rzeczywisty pas widzialności zakrycia jest wąski — może się zdarzyć, że nie wszędzie zakrycie będzie widoczne.

Artykuł P. D. Maleya publikujemy w nadziei, że zmotywuje on „potencjalnych obserwatorów” do przygotowania się do obserwacji według wytycznych programu, w szczególności do przeprowadzania treningu. Dużą pomocą mogą tu być obserwacje „zwykłych” zakryć gwiazd przez Księżyce oraz obserwacje zjawisk w układzie satelitów Jowisza.

LUDWIK ZAJDLER

Krzysztof Ziołkowski — Warszawa

BADANIA KOSMICZNE W POLSCE (II)

Działem badań kosmicznych o największym znaczeniu gospodarczym jest niewątpliwie tzw. teledetekcja czyli wykorzystywanie sztucznych satelitów Ziemi jako platform, z których dokonuje się obserwacji różnych zjawisk na powierzchni Ziemi, zarówno naturalnych i jak i wywołanych działalnością ludzką. Można tu wymienić dla przykładu badania wzrostu zbóż i prognozy plonów, badania pokrywy roślinnej kraju, rozchodzenia się zanieczyszczeń w powietrzu i wodzie, zasobów biologicznych morza, struktur geologicznych nie dających się wyróżnić przez obserwacje z Ziemi lub z samolotu itp.

Prace dotyczące teledetekcji rozpoczęły się w Polsce na szerszą skalę dopiero w 1976 roku z chwilą utworzenia Ośrodka Przetwarzania Obrazów Lotniczych i Satelitarnych w Instytucie Geodezji i Kartografii. Wśród dotychczas uzyskanych rezultatów do najważniejszych należy zaliczyć eksperymenty TELEFOTO-77 i TELEFOTO-78, które polegały na wykonaniu w latach 1977 i 1978 nad obszarami testowymi w okolicach Srody Śląskiej i Mosiny zdjęć i pomiarów z radzieckiego samolotu-laboratorium An-30 oraz wspomagających pomiarów naziemnych. Wynikiem tych eksperymentów są wielospektralne zdjęcia lotnicze z różnych wysokości, obrazy skanerowe i aerospektrofotometryczne, które są przetwarzane do postaci map tematycznych dla potrzeb rolnictwa, geologii, hydrologii i innych dziedzin gospodarki narodowej.

Z zastosowaniem techniki lotniczej wykonano również wiele innych prac stanowiących jak gdyby wstęp do teledetekcji satelitarnej. Przykładem może być mapa termicznych warunków podłoża południowej części Warszawy opracowana na podstawie lotniczych obrazów termalnych, a także analiza struktury upraw i zasiewów przeprowadzona w oparciu o zdjęcia lotnicze wykonane w podczerwieni.
Ostatnio rozpoczęto w Polsce również prace instrumentalne dla potrzeb teledetekcji. Skonstruowany został np. model laboratoryjny spektrometru do uzyskiwania wielobarwnych obrazów lądów i mórz. Polska uczestniczy ponadto w przygotowywaniu aparatury do tworzonego w ramach programu INTER-KOSMOS systemu automatycznego zbierania z rozrzuconych po całym globie platform pomiarowych odpowiedniej informacji i automatycznego jej przekazywania przez satelitę do centrum danych.

W zakresie meteorologii kosmicznej możliwość bezpośredniego odbierania televizyjnego obrazu chmur z satelitów meteorologicznych powstała w Polsce już w 1967 roku. Wtedy jednak można było rozróżniać na odpowiednich zdjęciach elementy o rozmiarach rzędu kilku kilometrów. Ostatnio wprowadzony system pozwala rozróżnić szczegóły o rozmiarach rzędu kilometra. Obecnie trwają prace nad uruchomieniem odbioru obrazów w niewidzialnej podczerwonej części widma. Umożliwi to zbieranie informacji o rozkładzie temperatur w różnych warstwach atmosfery, co należy do najważniejszych elementów przy prognozowaniu pogody. Dla umożliwienia w pełni zaautomatyzowanego opracowywania danych buduje się aparaturę do odbioru sygnałów z satelitów meteorologicznych w postaci cyfrowej.

Wśród innych wyników odnotować warto opracowanie oryginalnej metody przewidywania występowania zjawisk burzowych i rodzajów opadów, a także opracowywanie prognoz wystąpienia opadów na podstawie chmurowych zdjęć televizyjnych odbieranych z satelitów meteorologicznych.

Intensywny udział Polski w pracach związanych z łącznością kosmiczną datuje się od roku 1971 kiedy to państwa socjalistyczne powołały do życia Międzynarodową Organizację Łączności Satelitarnej INTERSPUTNIK. We wrześniu 1974 roku uruchomiono w Psarach w Górach Świętokrzyskich stację łączności satelitarnej, która początkowo pozwalała na transmisję programów telewizyjnych i radiofonicznych w ramach Interwizji, a obecnie może również być wykorzystywana do realizacji międzynarodowych połączeń telefonicznych i telegraficznych. Łączność ta odbywa się za pośrednictwem radzieckich satelitów typu Mołnia.

W ramach programu INTERKOSMOS Polska uczestniczy we wspólnie prowadzonych pracach, które dotyczą między innymi poznania warunków propagacji fal elektromagnetycznych i budowy urządzeń łączności satelitarnej w zakresie czę-
stotliwości od 10 do 30 GHz, podwyższenia efektywności wykorzystania systemów satelitarnych w telekomunikacji dalekosiężnej, badań nad optymalizacją techniczno-ekonomiczną różnych systemów łączności, elektromagnetycznej zgodności systemów satelitarnych i ziemskich oraz tzw. radiodyfuzji satelitarnej (odbior programów radiowych i telewizyjnych nadawanych z geostacjonarnego satelity bezpośrednio przez użytkowników czyli bez pośrednictwa stacji przekaźnikowych). W tej ostatniej dziedzinie prowadzi się obecnie prace konstrukcyjne nad modelem użytkowym urządzenia naziemnego do bezpośredniego odbioru sygnałów telewizyjnych nadawanych z satelity i rozprowadzaniem go za pomocą kabli w instalacji anteny zbiorowej do grupy odbiorców zamieszkałych np. w dużym bloku mieszkalnym lub na terenie osiedla.

W dziedzinie biologii i medycyny kosmicznej rozwijane są w Polsce prace dotyczące głównie następujących zagadnień:

— Wpływ nieważkości na organizm w realnych lotach kosmicznych i modełowych eksperymentach na Ziemi. W tym zakresie przeprowadzono badania dla wyjaśnienia charakteru oraz mechanizmów zaburzeń w układzie mięśniowym i kostnym oraz w korze nadnerczy występujących podczas nieważkości.

— Wpływ na organizm środowiska gazowego oraz termicznegom odpowiadających warunkom lotu kosmicznego. Wykonane badania dotyczyły oceny zdolności do pracy fizycznej i umysłowej w warunkach niedotlenienia i podwyższonej zawartości dwutlenku węgla w powietrzu oraz zachowania się mechanizmów termoregulacji w wysokich temperaturach otoczenia.

— Biologiczna rola grawitacji. Prowadzone są badania tolerancji przyspieszeń w zależności od czynników konstytucjonalnych oraz zdrowotnych, mające na celu ustalenie kryteriów selekcji do lotów kosmicznych.

— Badania reakcji narządów równowagi człowieka w zastosowaniu do warunków lotu kosmicznego. Mają one na celu określenie charakteru reakcji człowieka podczas czynnościowych prób narzędzia przedsiomkowego oraz ocenę efektywności preparatów farmakologicznych w zapobieganiu występowaniu choroby lokomocjnej.

— Badania rytmów biologicznych organizmu w aspekcie kosmicznym. Dotyczą one określania zachowania się mechanizmów tolerancji niedotlenienia w zależności od fazy cyklu dobowego oraz reakcji układu dokrewnego i przemiany węglowodanowej.

— Zagadnienia psychologiczne w lotach kosmicznych.
Opracowano metodykę badań psychologicznych przeznaczonych do selekcji kosmonautów oraz dzienniczek pokładowy do oceny stanu psychofizjologicznego kosmonauty w warunkach lotu kosmicznego. Rozpoczęto opracowywanie specjalnej elektronicznej aparatury do badań psychologicznych na statkach kosmicznych.

— zastosowanie chemicznych radioprotektorów przy porażeniach radiacyjnych. Badania dotyczą efektywności środków farmakologicznych w zapobieganiu oraz leczeniu choroby popromiennej oraz ich skuteczności przy jednoczesnym działaniu fizycznych czynników lotu kosmicznego.

Warto podkreślić, że tematy prowadzonych badań, będąc ścisłe powiązanymi z problematyką kosmiczną, znajdują jednocześnie szerokie zastosowanie w wielu dziedzinach medycyny, a w szczególności w medycynie lotniczej, medycynie pracy, medycynie sportowej, radiobiologii oraz w psychologii.

Najbardziej spektakularnym i obejmującym różne kierunki przedsięwzięciem w dziedzinie badań kosmicznych w Polsce był lot pierwszego polskiego kosmonauty na przełomie czerwca i lipca 1978 roku, podczas którego zrealizowano 11 eksperymentów naukowych. Pięć eksperymentów było przygotowanych wyłącznie przez stronę polską, a czterech dalszych naukowcy polscy byli współautorami.

Jednym z najciekawszych, a jednocześnie pierwszym polskim eksperymentem w zakresie technologii materiałowej w kosmosie, był eksperyment SYRENA. Głównym jego celem było zbadanie wpływu nieważkości na procesy krystalizacji trójskładnikowych półprzewodników z fazy ciekłej i gazowej. Szczególnie interesujący był wpływ braku grawitacji na takie cechy otrzymanych półprzewodników jak jednorodność krystalizacji, doskonałość struktury krystalograficznej, wpływ ciśnienia par własnych materiału na proces wzrostu, wpływ szybkości krystalizacji na jakość otrzymanego materiału.

Cztery następne spośród przygotowanych w Polsce eksperymentów dotyczyły medycyny kosmicznej. W eksperymentie SMAK zbadano za pomocą specjalnie do tego celu skonstruowanej aparatury elektronicznej stopień odczucia smaku w sta-
nie nieważkości i stwierdzono spadek wrażliwości receptorów smakowych oraz zaobserwowano wydłużenie czasu odruchu żołądkowo-językowego. Dynamiczna kontrola czynności układu krążenia w warunkach obciążenia wysiłkowego była przedmiotem eksperymentu KARDIOLIDER. Opracowany do tego celu przyrząd umożliwił podczas treningu w czasie lotu kosmicznego ustalenie częstotliwości skurczów serca na określonym poziomie poprzez odpowiednie regulowanie obciążenia fizycznego. Uzyskane wyniki stanowić będą podstawę do opracowania metodyki oraz aparatury do prowadzenia programowanego treningu w oparciu o kryteria odpowiedzi układu krążenia. Eksperyment ZDROWIE był próbą oceny wydolności fizycznej kosmonauty, opartej na zasadzie określenia wielkości wykonanej pracy w warunkach ustalonego stanu czynnościowego organizmu regulowanego na zasadzie ujemnego sprzężenia zwrotnego pomiędzy czynnością serca, a urządzeniem obciążającym. I wreszcie eksperyment RELAKS poświęcono badaniu efektywności programu rozrywkowego kosmonautów w warunkach lotu kosmicznego.

Eksperymenty przygotowane wspólnie z naukowcami ZSRR i NRD dotyczyły badań zjawisk na powierzchni Ziemi i w atmosferze. W eksperyencie ZIEMIA wykonano zdjęcia powierzchni Ziemi za pomocą wielospektralnej kamery MKF-6m. Łącznie z wynikami jednocześnie przeprowadzonego eksperymentu TELEFOTO-78, o którym była mowa wyżej, zebrano bogaty materiał teledetekcyjny, który jest obecnie przetwarzany do postaci map tematycznych dla potrzeb gospodarki narodowej. Celem eksperymentu ZORZA były obserwacje zór polarnych z pokładu statku kosmicznego. Pozostałe eksperymenty (TEST, CIEPŁO, CZAJKA, TLEN) dotyczyły zagadnień medycznych.

Tyle o przeszłości i obecnym stanie badań kosmicznych w Polsce. Przegląd ten nie byłby jednak kompletny gdyby nie wspomnieć chociaż o zamierzeniach na najbliższą przyszłość. O niektórych była już mowa, jak np. o eksperyencie DIDEX dotyczącym badań pola grawitacyjnego Ziemi (na zakończenie pierwszej części w poprzednim numerze Uranii) czy też o pracach związanych z radiodyfuzją satelitarną, o których była mowa wyżej. Zaawansowane są ponadto prace nad przygotowaniem w ramach programu INTERKOSMOS kilku nowych eksperymentów kosmicznych jak np. POLRAD, którego celem będzie pomiar polaryzacji promieniowania radiowego Słońca, Ziemi i planet na falach hekto- i kilometrowych, TELE-
GWIAZDA, który polega na opracowaniu systemu orientacji położenia satelity na podstawie widzianego przez kamerę obrazu gwiazd, czy też RELIKT, w ramach którego polscy konstruktorzy uczestniczą w przygotowaniu aparatury do pomiaru promieniowania relikowego Wszechświata z pokładu satelity. Pomyślne przeprowadzenie podczas lotu pierwszego polskiego kosmonauty eksperymentu technologicznego SYRENA pokażało możliwości i potrzebę rozwoju w Polsce inżynierii materialowej w Kosmosie. Biorąc pod uwagę utylitarny charakter tych zagadnień plany badań kosmicznych na najbliższą przyszłość nadają im, podobnie jak teledetekcji, odpowiednią rangę.

HONORATA KORPIKIEWICZ — Poznań

KRATERY NA KSIĘŻYCU I ZIEMI
czyli: czy na Księżyc t e ż spadają meteoryty?

Pytanie postawione w podtytule zaskoczy na pewno Czytelnika, który potraktuje je być może jako spóźniony żart primaprilisowy. Przecież każdy z nas wie doskonale, że na Księżycu są kratery meteorytowe, i to w znacznie większej ilości niż na Ziemi, ponieważ Księżyc nie posiada atmosfery, która chroni go przed tym „kosmicznym bombardowaniem”. W związku z odkrywaniem wciąż nowych kraterów na Ziemi stało się oczywiste, że krater meteorytowe muszą występować także na innych planetach i to w tym większej ilości, im rzadsza jest atmosfera danej planety. Skąd więc wątpliwości i znak zapytania w podtytule? Czyżby jeszcze ktoś nie wierzył w meteorytowe pochodzenie kraterów na Księżycu?

Uspokójmy od razu Czytelnika, że nikt nie wątpi w spadanie meteorytów na powierzchnię Księżycu. Problem jednak w tym, czy rzeczywiście wszystkie kratery księżyckie są pochodzenia meteorytowego, czy też możliwe jest tutaj działanie innych procesów kraterotwórczych, np. wulkanizmu. Przyjrzyjmy się historii odkrywania kraterów.

Pierwszy krater meteorytowy odkryto na... Ziemi. Był to znaleziony w 1891 roku słynny dziś Kanion Diabła w Arizonie, co do którego pochodzenia toczyły się przez wiele lat zacięte spory pomiędzy przedstawicielami różnych dyscyplin nauki. Jak wiadomo, problem rozwiązały stare, indyjskie legendy, według których nad kraterem kiedyś — przed wiekami —
„bóg zstąpił z nieba”. Stało się jasne, że dziwne zagłębienie w Stanie Arizona jest kraterem meteorytowym. Znalezienie blisko 30 ton odłamków meteorytów potwierdziło to przypuszczenie.

Krater na Księżycu były obserwowane od czasu, kiedy udało się je dostrzec przy pomocy teleskopu, a więc od czasów Galileusza. Nie znano jednak ich pochodzenia. Pierwotnie sądzono, za Herschelem, że kratery księżycowe są pochodzenia wulkanicznego. Odmianną hipotezę wysuwał Hooke, przypuszczając, że powstały na skutek wrzenia powierzchni Księżyca w czasie jego powstania.

Hipoteza meteorytowego pochodzenia kraterów na Księżycu pojawiła się w czasie, gdy stwierdzono spadek meteorytów na Ziemię. Był to, jak pamiętamy, rok 1804, a słynny deszcz meteorytowy, który rozwiał wątpliwości uczonych, spadł pod Aigle we Francji. Argumentem na rzecz tej hipotezy było odnalezienie krateru meteorytowego na Ziemi, wspomnianego wyżej Kanionu Diabła w Arizonie.

Ale nie wszyscy badacze Księżyca przyjęli hipotezę o meteorytowym pochodzeniu kraterów. Ucznieli podzielili się na dwa obozy: zwolenników meteorytowego oraz wulkanicznego pochodzenia kraterów. Zawzięty spor który wiedli i nadal wiodą selenologowie, selenografowie i astronomowie, tyle że z pewnymi już ustępstwami na rzecz drugiej ze stron, można chyba porównać z odwiecznym problemem filozofii: co jest pierwotne — materia, czy duch? Problem pochodzenia kraterów księżycowych jest dla selenologa problemem równie zasadniczym, co podstawowe zagadnienie filozofii dla ontologa: co jest pierwotne — materia, czy duch? Problem pochodzenia kraterów księżycowych jest dla selenologa problemem równie zasadniczym, co podstawowe zagadnienie filozofii dla ontologa: co jest pierwotne — materia, czy duch? Problem pochodzenia kraterów księżycowych jest dla selenologa problemem równie zasadniczym, co podstawowe zagadnienie filozofii dla ontologa: co jest pierwotne — materia, czy duch? Problem pochodzenia kraterów księżycowych jest dla selenologa problemem równie zasadniczym, co podstawowe zagadnienie filozofii dla ontologa: co jest pierwotne — materia, czy duch?

Hipotezy, mówiące o wewnątrzksiężycowym procesie powstawania kraterów i mórz nazywamy *endogennymi*. Wysuwają się tutaj na czoło teorie wulkaniczne. Hipotezy *egzogenne* — to te, które przyjmują istnienie czynników zewnętrznych, pozxangiogowych, odpowiedzialnych za powstawanie formacji naszego satelity. Takimi czynnikami mają być zderzenia z meteorytami i planetoidami.
Hipoteza egzogenna — meteorytowa

Powstawanie kraterów meteorytowych na Księżycu różni się znacznie od procesu powstawania kraterów meteorytowych na Ziemi, czy innych planetach posiadających atmosferę.

Ciała meteorowe zderzają się z powierzchnią Księżyca z prędkościami kosmicznymi, tzn. takimi, z jakimi poruszają się w przestrzeni międzyplanetarnej. Nie zachodzi tu wyhamowanie prędkości, jak to jest w atmosferze Ziemi, bo Księżyc praktycznie nie ma atmosfery. Podczas uderzenia meteorytu w powierzchnię Księżyca cała jego masa zamienia się w gorący obłok sprężonego gazu. Rozprężenie powoduje wybuch, w efekcie którego powstaje krater meteorytowy. Wyrzucony w czasie wybuchu materiał tworzy wał wokół krateru, część jego opada z powrotem na dno krateru, niwelując jego powierzchnię. Pewna część materiału z wnętrza krateru zostaje wyrzucona na większe odległości, poza wał krateru. Tak powstają „smugi” rozchodzące się promieniście od środka krateru. Takie smugi można zaobserwować przy wielu księżycowych kraterach, między innymi przy kraterze Kopernik, gdzie występują wyjątkowo wyraźnie.

Rozmiary kraterów księżycowych są większe od kraterów ziemskich. Wprawdzie największy ziemski krater — Zatoka Hudsona — jest większy od największego krateru na Księżycu — Struve (Zatoka Hudsona — 440 km, a Struve 230 km średnicy), ale na Księżycu mamy kilka tysięcy kraterów o średnicy ponad 50 km, a na Ziemi zaledwie jedenaście. Większe rozmiary kraterów księżygowych można łatwo wytłumaczyć dwoma czynnikami: większą siłą wybuchu, spowodowaną brakiem atmosfery, oraz mniejszą siłą grawitacji, która powoduje zwiększony wyrzut materii podczas powstawania krateru.

Wybuchowe kratery meteorytowe mają kształt regularny, kolisty. Są to tzw. krater pierwotne. Podczas tworzenia się krateru wybuchowego część gruntu zostaje wyrzucona na duże wysokości. Większe odlamki spadając pod działaniem siły ciężkości i uderzając w grunt powodują powstanie kraterów uderzeniowych, zwanych kraterami wtórnymi. Ich kształty są mniej regularne niż kraterów pierwotnych, a rozmiary porównywalne z rozmiaarami spadających brył. Kratery wtórne mogą tworzyć zgrupowania lub ciągi złożone z kilku lub kilkunastu, a rzadziej kilkudziesięciu kraterów. Wiele kraterów księżycowych posiada centralne wzniesienia — tzw. centralne góry,
których pochodzenie nie jest jeszcze znane. Podobne góry występają czasami w kraterach na Ziemi, ale w kraterach, których meteorytowe pochodzenie nie zostało jeszcze w pełni udowodnione. Kratery księżycowe ulegają zmianom na skutek ciągłego bombardowania przez mikrometeoryty; zmiany te jednak są niewielkie. Przypuszcza się także, że na skutek istnienia naprężeń w ścianach szczególnie stromych kraterów mogą występować obrywy skalne. Ogólnie jednak należy stwierdzić, że ewolucja form kraterów księżycowych jest nieznaczna w porównaniu do niwelacji kraterów ziemskich, spowodowanej erozją, tak że ich czas życia jest znacznie dłuższy niż ziemskich, rzędu milionów lat. Praktycznie rzecz biorąc, krater księżycowy może zniszczyć tylko upadek meteorytu, który spowoduje powstanie nowego krateru. Często spotykane na Księżycu formy kraterów wielokrotnych (jeden krater wewnątrz drugiego lub wał jednego krateru zachodzący na drugi) świadczą o kolejności powstawania kraterów — oczywiście młodszy jest krater wewnętrzny, lub ten, którego wał jest w pełni zachowany.

Proces powstawania mórz miał być podobny do procesu tworzenia się kraterów, a różnicę się może jedynie skałą. Na Księżyc spadał nie meteoryt, lecz planetoida, a wnętrze ogromnego krateru wypełniło się lawą, która rozpłynęła się równomiernie po dnie „morza”. Góry łańcuchowe, otaczające morza, mają być fragmentami wałów kraterowych, powstałych w momencie wybuchu. Część materii została wyrzucona poza łańcuchy *kordylier*, jak nazywamy góry otaczające morza, tworząc tam grupy i ciągi wtórnych kraterów uderzeniowych.

Hipoteza meteorytowa tłumaczy kształty i rozmiary kraterów, ich ilość większą niż na Ziemi, a także fakt, że ich ilość wzrasta wraz ze zmniejszaniem się średnicy krateru. Zwolennicy hipotez egzogennych dopuszczają ponadto istnienie na Księżycu kraterów wulkanicznych, twierdząc że upadek masowego meteorytu może wzbudzić działalność wulkaniczną. Rzeczywiście, w wielu kraterach o typowo meteorytowych kształtach zaobserwowano wydobywające się gazy, co świadczy na rzecz powyższego przypuszczenia.

A więc kratery księżycowe są pochodzenia meteorytowego, a działalności wulkanicznej jest działalnością wtórną? Hipoteza ta wydaje się być uzasadniona, ale tu zgłaszają swój protest selenolodzy z drugiego obozu.
Hipoteza endogenna — wulkaniczna

Hipotezy wewnątrzksiężycowego pochodzenia kraterów są (z nielicznymi wyjątkami) hipotezami wulkanicznymi. Obu nazw będziemy tutaj używać jako synonimy.

Podczas gdy hipoteza meteorytowa dopuszcza zaledwie możliwość wzbudzenia działalności wulkanicznej pod wpływem uderzenia meteorytu — hipoteza wulkaniczna podtrzymuje tezę, że kratery meteorytowe występują na Księżycu w niewielkiej ilości. Kratery księżycowe mają być w zdecydowanej większości kraterami wulkanicznymi. Właściwymi kraterami są, według tej hipotezy, wspomniane góry centralne, a wały krateru powstały na skutek silnego, jednorazowego wyrzutu materii z wnętrza wulkanu. Dna kraterów zostały zniwelowane spływającymi strumieniami lawy. Smugi radialne kraterów powstają, podobnie jak w hipotezie meteorytowej w efekcie wyrzutu materii z wnętrza krateru, a uderzeniowe kratery wtórne są śladem po upadkach dużych bomb wulkanicznych. Na rzecz hipotezy wulkanicznej świadczy występowanie licznych szczelin w pobliżu kraterów, a także gromadzenie się ich w grupy lub ciągi, podobnie jak to się dzieje w obszarach aktywności wulkanicznej na Ziemi.

Morza uważane są za depresję o pochodzeniu wulkaniczno-tektonicznym z otaczającymi je tektonicznymi formacjami górskimi — kordylierami.

Zarówno hipotezy endo- jak i egzogenne są rozwijane równolegle. Obydwie zakładają możliwość istnienia na Księżyku zarówno kraterów meteorytowych, jak i wulkanicznych, różnicuje zdań polegają jedynie na proporcjach, w jakich mają występować te obiekty. W okresie przed lotami księżycowymi królowała hipoteza meteorytowa, teraz jednak wydaje się, że form wulkanicznych na Księżyku może być znacznie więcej, niż sądzono pierwotnie. Experimentum crucis byłoby tutaj stwierdzenie, czy centralne góry mogą występować w kraterach meteorytowych, w tej chwili bowiem ich obecność uważa się raczej za argument na rzecz wulkanicznego pochodzenia krateru. Jak wspominaliśmy, kilkanaście ziemszych kraterów posiada centralne góry, ich meteorytowe pochodzenie nie zostało jednak w pełni dowiedzione.

Reasumując to, co powiedzieliśmy dotychczas, podkreślmy różnice pomiędzy ziemskimi i księżycowymi kraterami (o powstawaniu kraterów na Ziemi pisaliśmy w Uranii 4/76):

1) **Krater wybuchowe.** Na Księżyku spadające
meteoryty tworzą kratery wybuchowe. Na Ziemi, ponieważ występuje hamowanie meteorytu w atmosferze, kraterów wybuchowych jest mało.

2) Kratery uderzeniowe. Na Księżycu kratery uderzeniowe — to kratery wtorne. Na Ziemi występują często jako formy pierwotne i powstają podczas zderzenia z Ziemią meteorytu biegnącego z prędkością mniejszą od 0,5 km/sek.

3) Zmiana kształtu kraterów. Na Ziemi spadki mikrometeorytów nie są tak szkodliwe dla struktury krateru, jak na Księżycu (hamowanie w atmosferze), bardzo silnie występuje natomiast erozja, powodująca szybkie zacieranie się konturów i znikanie kraterów z powierzchni Ziemi. Kratery księżycowe, o ile nie zostaną zbombardowane jakimś nowym meteorytem, mogą trwać miliony lat.

4) Kratery wielokrotne. Na Księżycu występuje wiele kraterów znajdujących się jedne wewnątrz drugich. Jest to efekt częstego spadania w to samo miejsce kolejnych meteorytów. Na Ziemi prawdopodobieństwo takiego spadku jest bardzo małe (atmosfera) i nie obserwuje się kraterów wielokrotnych, występuje jednak wiele grup kraterów, powstałych na skutek wybuchów meteorytu w atmosferze, czego nie ma na Księżycu.

Czy nasza stara Ziemia nie przypomina nam trochę Księżyca?

KRONIKA

Wzmianka o supernowej z roku 1054 w rękopisie arabskim

Pierwsze wiadomości o supernowej z roku 1054 pochodzą z kronik chińskich i japońskich. Dostrzegli ją także Indianie północno-amerykańscy, o czym świadczy istniejące w jednej z jaskiń arizońskich ma-
lowidło z tego okresu. Ostatnio zaś znaleziono dowody na to, iż była ona obserwowana również przez uczonych Bliskiego Wschodu. Mówi o tym rękopis z roku 1242, będący czymś w rodzaju słownika biograficznego znanych w owym czasie lekarzy arabskich. Jest wśród nich też biografia Ibn Butlana z Bagdadu, który żył w okresie pojawienia się supernowej w gwiazdorobożerze Byka i — o czym dowiadujemy się z rękopisu — na własne oczy obserwował to wspaniałe zjawisko przyrody. A ponieważ wierzył, że istnieje ścisły związek między zjawiskami na niebie a wydarzeniami na Ziemi, przeto w supernowej widział zwieszeń głodu i epidemii, akurat w latach 1054—1055 zbierających swe „żniwo” w dolinie Nilu.

Tak więc średniowieczny rękopis arabski rozważał od lat nurtujące uczonych wątpliwości. Niełatwo bowiem przychodziło pogodzić się z myślą, by to okazałe zjawisko przyrody — jakim przecież była supernowa z roku 1054 — mogła ujść uwagi astronomów Bliskiego Wschodu. Dlaczego jednak nic o tym nie mówią kroniki średniowiecznej Europy, Czyżby europejscy kronikarze — jak niektórzy sądzą — faktycznie wzdrągali się pisać o czymś, co według ówczesnych pojęć sprzeczne było z arystotelesowską koncepcją o doskonałości i niezmienności sfery niebieskiej? Jak wobec tego wytłumaczyć znajdujące się w kronikach z tamtych czasów wzmianki o obserwacji komet, które zgodnie z tym fałszywym poglądem Arystotelesa też należałoby chyba zaliczać do tego rodzaju zjawisk? A może — jak dla omiennych przypuszczać inni — supernowej z roku 1054 nie można było obserwować w Europie z powodu nieodpowiednich warunków atmosferycznych? Ale i to wyjaśnienie nie bardzo trafia do przekonania, ponieważ trudno sobie wprost wyobrazić, by niebo nad naszym kontynentem przez wiele miesięcy było zakryte chmurami. W każdym razie o takim fenomenie meteorologicznym szeroko powinni rozpisywać się ówczesni kronikarze.

Pod uwagę trzeba zatem brać i taką ewentualność, że europejski rękopis z wiadomością o supernowej z roku 1054 dopiero czeka na swego odkrywcy!

S. R. BRZOSTKIEWICZ

Pozostałość po supernowej z roku 1181

Astronomowie od dawna podejrzewali, że położone w gwiazdorobożerze Kasiopei radioźródło 3C58 stanowi pozostałość po supernowej, która wybuchła w naszej Galaktyce i była obserwowana w roku 1181 przez chińskich astronomów. Z kroniki dynastii Sung (panowała w Chinach w latach 960—1279) dowiadujemy się o „gościu gwiazdowym”, widocznym na niebie w ciągu 185 dni (w okresie od sierpnia 1181 roku do lutego 1182 roku). Przeprowadzona analiza ówczesnych obserwacji wykazała, iż jasność tej supernowej wynosiła około —4 wielkości gwiazdowej i że leżała ona niemal dokładnie w tym miejscu nieba, gdzie dziś znajduje się radioźródło (różnica nie przekracza 1°). Zwykle jednak po wybuchu supernowej pozostaje nie tylko radioźródło, ale i szybko rozprężająca się mgławica. Przykładem może być chociażby mgławica Krab, będąca pozostałością po supernowej z roku 1054. Tymczasem próby znalezienia takiej samej mgławicy w miejscu wybuchu supernowej z roku 1181 długo kończyły się niepowodzeniem. Dopiero niedawno Sidney van den Bergh na zdjęciach otrzymanych za pomocą pięciometrowego teleskopu na Mt Palomar odkrył słabą mgławicę, ścisłe
związana — jak się okazuje — z radioźródłem 3C58. Leży ona w odległości 8,2 ps i rozszerza się z szybkością 9 000—13 000 km/s. Jest to niewątpliwie pozostałość po wybuchu supernowej z roku 1181.

S. R. BRZOSTKIEWICZ

Alfa i Proksima Centauri

Właściwie dopiero praca C. Gasteyera opublikowana w roku 1966 (1) przyniosła wiarygodne stwierdzenie iż Proksima jest rzeczywiście najbliższą Słońcu gwiazdą, chociaż i ono obwarowane było ostrożnym: „prawdopodobnie bliższą niż Alfa Centauri”. Ostatecznego dowodu dostarczyli K. W. Kamper i A. J. Wesselink w opublikowanym niedawno studium astrometrycznym (2). Mierząc 300 klisz pochodzących z różnych obserwatoriów wyznaczyli paralaksę Proksimy na 0,772 zaś podwójnego układu Alfy na 0,750 sekundy łożku, co odpowiada odległościom 1,295 parseka (4,22 lat świetlna) dla pierwszej i 1,333 parseka (4,35 lat świetlna) dla systemu Alfa A i B. W obu przypadkach błąd wyznaczenia odległości równy jest około 0,6 procenta. Składniki A i B Alfy o jasnościach wizualnych 0,0 i 1,3 magnitudo, tworzą fizyczny układ podwójny o okresie obiegu 80 lat. Obecna odległość kątowa między nimi wynosi 21,8 sekundy łożku i rosła od 1957 kiedy była równa jedynie 1,7 sekundy łożku. Proksima, czerwony karzeł klasy widmowej M o jasności wizualnej 11,0 mgt, leży o 2°11' na południowym zachód od pary A + B i porusza się w przestrzeni razem z nią. Jest mało prawdopodobne, by związek Proksimy z Alfa był przypadkowy, chociaż ze względu na liczący około miliona lat okres obiegu Proksimy wokół barycentrum całego układu 3 gwiazd, jej ruch nie mógł zostać jeszcze bezpośrednio zmierzony. Interesujące w swoim czasie były pochodzące jeszcze z 1938 roku sugestie Holmberga (3), jakoby ruch własny Proksimy zakłócony był przez niewidzialnego towarzysza o masie równej 1,8 masy Jowisza. Obserwacji tych nie potwierdziły późniejsze badania, co razem z ponowną analizą pracy Holmberga (ograniczonej do 20 jedynie klisz zmierzonych z pokaźnym błędem ± 0,03 sekundy łożku), doprowadziło do obalenia hipotezy planet wokół tej gwiazdy (4).

(2) *Sky and Telescope*, vol. 57, 1979, 249.

ZBIGNIEW PAPROTNY

Rozmiary Słońca według współczesnych pomiarów

pomiarów heliometrycznych należy zwiększyć od 1,55 do 1,25 sekundy kątowej. Po uwzględnieniu tej poprawki wyliczona w oparciu o obserwacje z lat 1861—1974 wartość promienia kątowego tarczy słonecznej wynosi 960,00 ± 0,09°. A zatem jeżeli na jednostkę astronomiczną przyjmujemy wartość 149 597 879 ± 10 km, wówczas promień liniowy Słońca wypadnie równy 696 265 ± 65 km.

Według współczesnej teorii ewolucji gwiazd promień Słońca ma się powiększać rocznie o 2,9 cm. Tak więc od roku 1610, kiedy po raz pierwszy do obserwacji astronomicznych użyto lunety, wzrósł on zaledwie o około 10,7 m (0,000014°). Jest to oczywiście wartość niemożliwa do zmierzenia nawet przy obecnej technice obserwacyjnej.

Wielkość pierścieni Urana

W dniach 4 i 10 kwietnia 1978 roku Uran zakrył dwie słabe gwiazdy Wagi (13,4 i 11,6 wielkości gwiazdowej). Na podstawie fotometrycznych obserwacji powyższych zjawisk, dokonanych w ognisku dwu i pół metrowego teleskopu obserwatorium w Las Campanas (Chile), astronom amerykański Philip D. Nicholson potwierdził istnienie dziewięciu pierścieni wokół tej planety, które — według wzrastającej odległości — noszą obecnie następujące oznaczenia: 6, 5, 4, α, β, η, γ, δ i ε (1). Wyznaczone przez niego parametry ich promieni pokrywają się niemal zupełnie z danymi, jakie w oparciu o obserwacje zakrycia gwiazdy SAO 158867 z 10 marca 1977 roku otrzymał James L. Elliot wraz ze swymi współpracownikami (2). Pierścień η, γ, i δ mają prawie że dokładnie kołiste kształty i wszystkie trzy leżą w jednakowej płaszczyźnie (mniej więcej w płaszczyźnie orbit księżyców Urana). Również kształt pierścieni 6, 5, 4, α i β tylko nieznacznie odbiega od kół (e = 0,014), ale za to są one nieco nachylone względem płaszczyzny trzech pierwowych (i = 1°1). Najbardziej eliptyczny kształt ma prawdopodobnie pierścień ε, którego linia absyd wykazuje też dość duży ruch precesyjny (1°37 na dobę). A oto bliższe dane o poszczególnych pierścieniach Urana (wg Nicholsona):

<table>
<thead>
<tr>
<th>Pierścień</th>
<th>Promień (w km)</th>
<th>Szerokość (w km)</th>
<th>Pierścień</th>
<th>Promień (w km)</th>
<th>Szerokość (w km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>42 021</td>
<td>5</td>
<td>η</td>
<td>47 311</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>42 342</td>
<td>5</td>
<td>γ</td>
<td>47 746</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>42 660</td>
<td>5</td>
<td>δ</td>
<td>48 424</td>
<td>5</td>
</tr>
<tr>
<td>α</td>
<td>44 836</td>
<td>9</td>
<td>ε</td>
<td>51 270</td>
<td>20÷100</td>
</tr>
<tr>
<td>β</td>
<td>45 795</td>
<td>14÷16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. R. BRZOSTKIEWICZ
Komety i asteroidy w pobliżu Ziemi

Na podstawie zestawienia 8 przejść komet i planetoid w pobliżu Ziemi, w odległości mniejszej od 0,20 j.a., określono średni strumień i gęstość populacji różnych typów komet i małych planet w tym obszarze. Przy rozmiarach ciał przekraczających 1 kilometr, średnia częstość zbliżeń aż do 0,1 j.a. przeliczona na 100 lat wynosi: 2,5 dla komet długookresowych, 0,2 dla komet krótkookresowych typu komety Halley'a, 1,0 dla krótkookresowych komet rodziny Jowisza, 20—30 dla planetoid grupy Amora i 120—170 dla planetoid typu Apollo. Z ciałami tych rozmiarów Ziemia zderza się raz na 1,5—2 miliony lat.

ZBIGNIEW PAPROTNY

OBSERWACJE

Raport III 1979 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 5,0 (127 MHz, 31 dni obserwacji) i 193,9 su (28 000 MHz, 25 dni). Średnia miesięczna wskaźników zmienności — 0,03.

Radiowa aktywność Słońca w marcu wyraźnie spadła. Na częstościach 127 MHz niższe lub porównywalne średnie miesięczne notowano ostatnio w sierpniu ub. r. Mimo to, w bm. stwierdzono 14 zjawisk niezwykłych, w tym 5 słabych burz szumowych (wskaźnik zmienności 1 przypisano tylko burzy z dnia 8 III o godz. 1009,6 UT).

Dla częstości 2800 MHz opracowano 5 zjawisk niezwykłych, z których wyróżnił się wybuch z dnia 9 III. Przewyższył on poziom średni o 1522 ,su o godz. 1051 UT (na 127 MHz — 250 su o godz. 1023,1 UT).

Toruń, 11 kwietnia 1979 r.

H. WEŁNOWSKI, K. M. BORKOWSKI

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 3/79

W marcu 1979 r. nadal utrzymywała się wysoka plamotwórcza aktywność Słońca. Wystąpił nieznaczny wzrost liczb plamowych. Średnia miesięczna względna liczba Wolfa (*month mean Wolf Number*) za m. marzec 1979 r. R = 149,0
W marcu na widocznej tarczy Słońca zaobserwowano powstanie 38 nowych grup plam słonecznych. Były to przeważnie grupy małe. Wśród nich zaledwie kilka grup średniej wielkości. Powstania dużych grup nie odnotowano. Dlatego średnia dzienna powierzchnia plam wypadła w marcu o ok. 30% mniejsza, mimo iż ilość nowych odnotowanych grup była prawie o 20% większa. Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za m. marzec 1979 r. $S = 1231 \cdot 10^{-6}$

Średnia miesięczna konsekutynwa liczba plamowa z 13 miesięcy za miesiąc wrzesień 1978 r. wyniosła $R = 107.7$.

Dziennie liczby plamowe (Daily Wolf Numbers) w marcu 1979 r.: 142, 151, 158, 155, 156, 155, 164, 134, 156, 161, 142, 173, 165, 165, 147, 158, —, 137, 134, 126, 161, 154, 172, 170, 136, 135, —, 123, 146, 125, 146, —.

Dąbrowa Górnicza, 7 kwietnia 1979 r.

Wiadomość: W naszych Komunikatach zacześliśmy podawać wartości wskaźnika zmienności plamowej cyklu, jako nowego parametru plamotwórczej aktywności Słońca.

Aktywność słoneczna a biologia

W pracy miłośnika astronomii każda obserwacja, jeśli nie jest powtórzeniem tego, co robią gdzieindziej, ma posmak nowości i oryginalnego dorobku naukowego. Jedną z możliwości uzyskania tego rodzaju wyników jest studiowanie wpływu aktywności słonecznej na zjawiska biologiczne, na mikroklimat (a więc zmiany klimatyczne w danej miejscowości) itp. Naturalnie nie należy się spodziewać od razu rewelacyjnych wyników, ale przy wieloletniej wytrwałości można nieraz odsłaniać ślad wpływu aktywności słonecznej na to, co dzieje się na Ziemi. Oczywiście nie ma mowy o badaniach wpływu tej aktywności na stan zdrowia (zawały serca itp.), gdyż do takich badań potrzebne jest współdziałanie wielu specjalistów i licznych szpitali, ale mam na myśli prostsze obserwacje, takie jak np. studiowanie rocznych przyrostów drzew na grubość.

Z klasycznych prac Douglasa wynikało, że tysiącletnie sekwencje wyraźnie reagują na aktywność słoneczną, gdyż grubość słojów — rocznych przyrostów drzew — wykazywała wyraźną 11-letnią cykliczność. Podobne badania przeprowadzane na terenie Polski nie we wszystkich przypadkach potwierdzają wyniki Douglasa. Wydaje się, że na przyrost grubości świerków tatrzańskich tak silnie działają inne przyczyny, że brak jakiejkolwiek cykliczności. Podobnie zachowują się i inne drzewa w niektórych okolicach, gdzie klimatyczne zjawiska zamazują wpływ plam słonecznych. Trzeba pręcza tego pamiętać, że po-
równywanie jakichkolwiek zjawisk biologicznych z liczbami Wolfa prowadzi do zamazywania efektów, gdyż liczby Wolfa nie są dobrym miernikiem tych zjawisk aktywności słonecznej, które mogą oddziaływać na procesy biologiczne. Wobec jednak zbyt krótkiego czasu w ciągu którego rejestruje się fluktuacje wiatru słonecznego i promieniowania rentgenowskiego — z konieczności do badań tego rodzaju używa się jeszcze ciągle liczb Wolfa.

Niekiedy jednak i u nas trafiają się takie drzewa, których roczne przyrosty grubości wykazują jakieś ślady oddziaływania aktywności słonecznej. Takim drzewem była np. sosna wycięta w r. 1977 w lesie w Obornikach Śląskich koło Wrocławia. Wobec uszkodzenia centralnej części pnia można było zmierzyć grubość przyrostów jedynie od r. 1915, a więc w ciągu 62 lat. Załączony wykres ilustruje wyniki. Wyliczono średnie wartości przyrostów drzewa (S) i liczb Wolfa (R) dla faz sześciu cykli. Z porównania wykresu dla liczb Wolfa i przyrostów grubości zdaje się wynikać, że im więcej było plam, tym gorzej sosna rossa.

Niestety — jedna sosna nie jest miarodajna, a prócz tego efekt jest bardzo mały, mniejszy od błędu wyznaczania średniej wartości punktów podanych na wykresie. Trzeba by przebadać więcej drzew, tak jak to robił np. Witwinskas na Litwie, mierząc kilka tysięcy drzew rosnących na różnych glebach.

Wynik dla sosny obornickiej nie może więc być uważany za przekonywujący, dopóki nie zostanie potwierdzony przez inne drzewa. Poza tym ten przykład tylko jako ilustrację jednego z najprostszzych sposobów studiowania powiązań aktywności słonecznej ze zjawiskami biologicznymi. Metoda bardzo prosta. Mierzy się w milimetrach grubości warstw przyrostu na przekroju drzewa i porównuje się z rocznymi średnimi liczbami Wolfa. Kto ma dostęp do gospodarki leśnej, może łatwo zająć się takimi problemami. Można studiować i inne korelacje, jak to robi znany czytelnik Uranii obserwator Słońca z Myślenic, T. Kalinowski. Zajmuje się on zmianami obfitości zbioru miodu w la-
tach bogatych i ubogich w plamy słoneczne. A może ktoś zajmuje się entomologią, botaniką itp.? W każdej z tych dziedzin można doszukiwać się wpływu plam słonecznych, przy tym uzyskanie negatywnej odpowiedzi jest równie wartościowe jak i stwierdzenie istnienia wyraznej korelacji.

JAN MERGENTALER

KRONIKA HISTORYCZNA

Leopold Matkiewicz (1878—1949)

Postać Leopolda Matkiewicza, którego setna rocznica urodzin niedawno minęła, nie jest chyba znana w Polsce. Nie w tym dziwnego, żył bowiem i działał w Rosji.

Urodzony w Petersburgu w rodzinie nauczyciela fizyki i matematyki, po ukończeniu gimnazjum wstąpił do Instytutu Komunikacji. Jednakże zainteresowania astronomiczne skłaniają go do przejścia z trzeciego roku studiów w Instytucie na pierwszy rok wydziału fizyczno-matematycznego Uniwersytetu Petersburskiego.

Zajmuje się też i innymi zagadnieniami. W latach 1917—1919 przebywa na stacji szerokościowej w Czardżou, gdzie wykonuje obserwacje zmian szerokości geograficznej. Bierze również udział w pracach astronomiczno-geodezyjnych. Wyznacza mianowicie wraz z N. W. Zimmermannem (1890—1942) różnicę długości geograficznej między Moskwą a Pułkowem. W 1930 r. przeprowadza obserwacje na punktach astronomicznych na Morzu Barentsa, a w 1936 r. na Białorusi.

W uznaniu zasług naukowych otrzymuje w 1936 r. bez obrony rozprawy stopień doktora nauk fizyczno-matematycznych, będący odpowiednikiem naszej habilitacji.

Na marginesie warto zaznaczyć, że był zięciem znakomitego pułkowskiego astrofizyka A. A. Biełopolskiego (1854—1934). W 1961 r., podczas pobytu w Pułkowie, miałem nawet okazję poznać wdowę po Matkiewiczu. Wspomniała mi ona o jego polskim pochodzeniu i o poświadaniu przez niego polskich książek.

PRZEMYSŁAW RYBKA

Tytuł książki *Astronomia wczoraj i dziś* określa jej treść — jest to popularny przegląd rozwoju wyobrażeń o otaczającym nas Wszechświecie, od czasów starożytnych do naszych dni. Rzut oka na spis treści pozwala ocenić zamysł Autora, a tytuły poszczególnych części i rozdziałów świadczą o talencie popularyzatorskim I. A. Klimiszyna, profesora astronomii w Instytucie Pedagogicznym w Iwano-Frankowsku (dawniej Stanisławów).

Część pierwsza — nosząca tytuł *Świt Nauki* — zawiera następujące rozdziały poświęcone głównie astronomii Starożytności i Średniowiecza: *Pierwsza była astronomia*, w którym to rozdział Autor przedstawia powstanie astronomii i kosmologii ludów starożytnych — koresponduje z nim następny rozdział *Świat filozofów Grecji Starożytnej* podający rozważania o praełementach wszechświata (woda, powietrze, czy ogień?), pierwszą hipotezę atomistycznej budowy materii (Anaksagoras i Demokryt), a także omawiający system sfer kryształowych wprowadzonych przez Eudoksosa, a udoskonalony przez Arystotelesa. Rozdział *Ile jest stadiów do Słońca?* poświęcony został pierwszym pomiarom obwodu Ziemi i ocenom odległości Księżyca i Słońca, czym zajmowali się tak wybitni uczeni jak Arystarch, Arystoteles, Erathostenes i Hiparch. Podsumowanie wiedzy starożytnych daje rozdział *Mathematikē syntaxis* Ptolemeusza; dzieło to stanowi encyklopedię astronomii antycznej ogarniając wszystkie uprzednie dokonania kapłanów i uczonych Egiptu, Mezopotamii, Grecji i Świata Hellenistycznego, w oparciu o które Ptolemeusz sformułował geocentryczną teorię świata w jej ostatecznej wersji. W rozdziale tym Autor podaje również opis dawnych instrumentów astronomicznych, zaczerpnięty zresztą po większości z dzieła Ptolemeusza. Kolejny rozdział, zatytułowany nader ponuro *Stracone tysiąclecie*, opowiada o krachu kultury antycznej, „recydywie dzieciństwa” w wyobrażeniach o otaczającym ludzkę świecie i o „nikłym płomieniu we mgle”, czyli o astronomii Orientu. Część pierwszą kończy rozdział *W przededniu rewolucji* przedstawiający powolne budzenie się Europy po długotrwałym zastoju naukowym, co w naturalny sposób doprowadziło do krytyki systemu świata Ptolemeusza. Zdumiewa tylko fakt, iż Autor tak skrupulatnie, przecięt nie wyjaśniający, kim przyczynił się do regresu nauki, nie podaje, kim byli Mikołaj d'Oresme i Mikołaj z Kuzy, owi zwieszenia nowej nauki.

chronologiczny układ książki — rozwój nabiera lawinowego charakteru
i to we wszystkich kierunkach i dziedzinach wiedzy — stąd też trudno
już Autorowi zapewnić chronologiczną ciągłość wywodu: I. A. Klimi-
szyn niejako zmuszony jest znów powrócić do Galileusza chcąc dać
przegląd problemów i sukcesów astronomii „teleskopowej” oraz wpro-
wodzić pewne pojęcia teoretyczne niezbędne w dalszej części książki,
a dokładniej — już w następnym rozdziale zatytułowanym Wielkie wta-
jemniczenie. Jest to opowieść o człowieku, który „stał na ramionach
gigantów”, dzięki czemu horyzont jego myśli i wiedzy był znacznie roz-
leglejszy. Tak więc Newton i jego dzieło otwiera kolejną erę w roz-
woju astronomii, zarówno teoretycznej (mechanika nieba) jak i obser-
wacyjnej (konstruowanie refflektorów), co znajduje swój wyraz w ty-
tule rozdziału Dwieście lat postępu, ostatniego w drugiej części książki.
Przedstawia on sukcesy teorii ciążenia powszechnego, powstanie kos-
mogonii, poszukiwanie procesów zapewniających Słońcu i gwiazdom
wydajne i długotrwałe źródła energii i wreszcie pierwsze oznaki nie-
zgodności postulatów kosmologicznych Newtona z rzeczywistością obser-
wowaną (paradoks fotometryczny Olbersa i grawitacyjny Seeligera).

Trzecia część książki nosi nazwę Horyzonty XX wieku. Rozpoczyna
ją rozdział pod wielce obiecującym tytułem Klucze do nieba, w którym
 Autor prezentuje, w optymistycznym nastroju, możliwości największych
instrumentów obserwacyjnych XX wieku — tak optycznych jak i ra-
diowych — a także daje krótki przegląd metod i technik obserwacyj-
nych. Po tym wstępie I. A. Klimiszyn rozdziałem W świecie gwiazd
i mógłby przechodzić do przedstawienia zdobyczy astronomicznych wy-
konanych przez największe instrumenty obserwacyjne w ostatnich
latach. Z kolei rozdział Na skrzyżowaniach dróg milczaków wpro-
wadza nas w zagadnienia budowy naszej Galaktyki, astronomii poza-
galaktycznej i obserwacyjnych podstaw współczesnej kosmologii, a w
rozdziale O modelu gorącego Wszechświata Autor przedstawia teore-
tyczne podstawy nowoczesnej kosmologii (geometria nieeuklidesowa i te-
oria względności) oraz daje przegląd typów modeli kosmologicznych.

Rozdział ten jest szczególnie nasycony wzorami i formułami, a może
początkującemu miłośnikowi astronomii wydać się za trudny, toteż jakby
dla przeciwwagi następny rozdział, Granice kosmologii współczesnej,
jest niemal pozbawiony wzorów i stanowi niejako podsumowanie dwóch
poprzednich rozdziałów, w sposób już przystępny nakreslając najpraw-
dopodobniejszą drogę rozwoju Wszechświata, ewolucji gwiazd i pow-
wstania i rozwoju naszego Układu Słonecznego. I. A. Klimiszyn nie
skrywa trudności, jakie piętrzą się przed uczonymi w trakcie rozwią-
zywania wyżej nazwanych problemów, toteż zwrot „najprawdopodob-
niejsza droga” oznacza — „jedna z najbardziej prawdopodobnych dróg
w świetle obecnego stanu naszego poznania”.

Ostatni rozdział książki, niestety nader krótki, porusza najbardziej
dziś intrugującą i emocjonującą kwestię — problematykę CETI. Autor
uznając negatywne rezultaty dotychczasowych prób odkrycia kosmicz-
nych artefaktów, wyników nasłuchu i prób kontaktu z innymi cywili-
zacjami, wyraża jeszcze głębszą nadzieję na kontakt z innymi cywilizacjami galaktycznymi, bowiem
jest niezbyt przekonany, iż nie tylko Ziemia jest oazą życia
i rozumu we Wszechświecie.

Chociaż nie łatwo jest zdobyć omawianą pozycję, wypada jednak
dołożyć starań, żeby mieć ją we własnej bibliotece astronomicznej.
Oto co wydrukowano na drugiej stronie okładki tej książki:

"Książka wyjaśnia istotę zjawiska zwanego aktywnością Słońca, którego wpływ na życie na Ziemi zauważono już dość dawno! Autor nie ogranicza się do przedstawienia hipotez o związku między „płomieniami na powierzchni Słońca” a np. rytmem wzrostu roślin, poziomem wód, zmianami klimatu, funkcjonowaniem łączności, pojawianiem się epidemii i chorób, lecz tłumaczy także skomplikowane procesy fizyczne, dziejące się w słonecznym skupisku materii, takie jak: działanie pól magnetycznych, różnego rodzaju promieniowania, rozbłyski, wiatr słoneczny".

Autor książki poświęcił miłośnikom astronomii i wszystkim tym, którzy chcieliby dowiedzieć się czegoś o Słońcu i jego wpływie na naszą planetę. Warto przeczytać i powiększyć o ten egzemplarz swoją domową bibliotekę. Polecam.

BOLESŁAW SCHLOSSBERGER

KALENDARZYK ASTRONOMICZNY

Opracował G. Sitarcki

Wrzesień 1979 r.

Słońce

Wędrując po eklipcie Słońce po raz drugi w tym roku przekracza równik niebieski, tym razem w punkcie równocyżnym jesienią, wstępując 23 września w znak Wagi. Mamy wówczas początek jesieni astronomicznej, a dni stają się ciągle coraz krótsze. W Warszawie 1 września Słońce wschodzi o 5h48m, zachodzi o 19h25m, a 30 września wschodzi o 6h34m, zachodzi o 18h18m.

Dane dla obserwatorów Słońca (na 14h czasu wschod.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B_0</th>
<th>L_0</th>
<th>Data 1979</th>
<th>P</th>
<th>B_0</th>
<th>L_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX 1</td>
<td>+21.08</td>
<td>+7.20</td>
<td>107.46</td>
<td>IX 17</td>
<td>+24.90</td>
<td>+7.17</td>
<td>256.17</td>
</tr>
<tr>
<td>3</td>
<td>+21.57</td>
<td>+7.22</td>
<td>81.04</td>
<td>19</td>
<td>+24.72</td>
<td>+7.13</td>
<td>229.77</td>
</tr>
<tr>
<td>5</td>
<td>+22.04</td>
<td>+7.24</td>
<td>54.62</td>
<td>21</td>
<td>+25.00</td>
<td>+7.08</td>
<td>203.37</td>
</tr>
<tr>
<td>7</td>
<td>+22.50</td>
<td>+7.25</td>
<td>28.22</td>
<td>23</td>
<td>+25.25</td>
<td>+7.02</td>
<td>176.98</td>
</tr>
<tr>
<td>9</td>
<td>+22.92</td>
<td>+7.25</td>
<td>1.80</td>
<td>25</td>
<td>+25.48</td>
<td>+6.96</td>
<td>150.58</td>
</tr>
<tr>
<td>11</td>
<td>+23.33</td>
<td>+7.24</td>
<td>335.39</td>
<td>27</td>
<td>+25.68</td>
<td>+6.88</td>
<td>124.18</td>
</tr>
<tr>
<td>13</td>
<td>+23.72</td>
<td>+7.22</td>
<td>308.98</td>
<td>29</td>
<td>+25.86</td>
<td>+6.80</td>
<td>97.79</td>
</tr>
<tr>
<td>15</td>
<td>+24.08</td>
<td>+7.20</td>
<td>282.58</td>
<td>X 1</td>
<td>+26.00</td>
<td>+6.70</td>
<td>71.40</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
B_0, L_0 — heliograficzna długość i szerokość środka tarczy.
9d17h22m — heliograficzna długość środka tarczy wynosi 0°.
Księżyc

Bezsksiężycowe noce będziemy mieli w drugiej połowie miesiąca, bowiem kolejność faz Księżyca jest w wrześniu następująca: pełnia 6d13h, ostatnia kwadra 13d8h, nów 21d12h, pierwsza kwadra 29d6h. Najsłodsze Ziemi Księżyca znajdzie się 6, a najdalej od Ziemi 19 września. W tym miesiącu zdarzy się też całkowite zaćmienie Księżyca, w Polsce nie widoczne; zaćmienie widoczne będzie w Ameryce, na Oceanie Spokojnym i w Australii. Tarcza Księżyca zakryje także w tym miesiącu Aldebarana, najjaśniejszą gwiazdę w gwiazdozbiorze Byka, ale i to zjawisko będzie u nas niewidoczne.

Planety i planetoidy

W pierwszych dniach września możemy jeszcze obserwować Merkurego, rankiem, nisko nad wschodnim horyzontem jako dość jasną gwiazdę około —1.3 wielkości. Nad ranem też wschodzi Jowisz i łatwo go pomylić z Merkurem, bo też jest —1.3 wielkości gwiazdowej. Mars wschodzi około północy i widoczny jest w gwiazdozbiorze Bliźniat jako czerwona gwiazda +1.5 wielkości. Pozostałe planety są niewidoczne.

Przez lunety możemy także poszukiwać trzech najjaśniejszych planetoid: Ceres prawie całą noc na granicy gwiazdozbiorów Ryb i Wieloryba (około 8 wielk. gwiazd.), Pallas wieczorem na granicy gwiazdozbiorów Orła i Delfina (około 10 wielk. gwiazd.) oraz Westę nad ranem w gwiazdozbiorze Wieloryba (około 7.5 wielk. gwiazd.). Planetoidy rozpoznajmy po ich ruchu wśród gwiazd, a dla łatwiejszej lokalizacji na niebie podajemy współrzędne równikowe dla kilku dat.

<table>
<thead>
<tr>
<th>Data 1978</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Westa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rekt.</td>
<td>dekl.</td>
<td>rekt.</td>
</tr>
<tr>
<td>IX 1</td>
<td>1h29m4</td>
<td>-6'00"</td>
<td>20h56m7</td>
</tr>
<tr>
<td>11</td>
<td>1 25.4</td>
<td>-6 51</td>
<td>20 51.2</td>
</tr>
<tr>
<td>21</td>
<td>1 19.4</td>
<td>-7 44</td>
<td>20 47.4</td>
</tr>
<tr>
<td>X 1</td>
<td>1 11.8</td>
<td>-8 34</td>
<td>20 45.6</td>
</tr>
</tbody>
</table>

2d13h Złączenie Merkurego z Regulusem, gwiazdą pierwszej wielkości w gwiazdozbiorze Lwa (w odl. około 1°). Merkurego możemy obejrzeć rankiem nad wschodem horyzontem jako gwiazdę —1.3 wielkości. Takiej samej jasności jest Jowisz (również nisko nad wschodem horyzontem), ale przez lunetę odróżnimy go łatwo od Merkurego po wyglądu tarczy.

6d Około południa nastąpi całkowite zaćmienie Księżyca u nas ze zrozumiałych względów niewidoczne. Zaćmienie widoczne będzie w Ameryce i w Australii.

10d16h Saturn w złączeniu ze Słońcem.

12d13h Bliskie złączenie Księżyca z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiorze Byka. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie na Oceanie Spokojnym, w Północnej i Środkowej Ameryce, na Północnym Atlantyku i w północno-zachodniej Afryce.
13^{d7h} Górne złączenie Merkurego ze Słońcem.
15^{d1h} Złączenie Marsa z Polluxsem (w odl. 6°), jedną z dwóch jasnych gwiazd w gwiazdozbiorze Błoniec.
16^{d5h} Złączenie Marsa z Księżyce w odl. 5°.
17^{d3h} Planetoida Westa nieruchoma w rektascensji (zmienia kierunek swego pozornego ruchu wśród gwiazd).
18^{d24h} Złączenie Jowisza z Księżyce w odl. 2°.
23^{d17h17m} Słońce wstępuje w znak Wagi, jego długość ekliptyczna wynosi wówczas 180°. Mamy początek jesieni astronomicznej.
25^{d13h} Uran w złączeniu z Księżyce w odl. 5°.
26^{d15h} Jowisz w złączeniu z Regulusem, gwiazdą pierwszej wielkości w gwiazdozbiorze Lwa, w odległości 0°3.
27^{d22h} Złączenie Neptuna z Księżyce w odl. 4°.

Minima Algola (beta Perseusza): wrzesień 8^{d6h55m}, 11^{d3h40m}, 13^{d24h} 35^m, 16^{d21h25m}, 19^{d18h10m}, 28^{d8h30m}.

Momenty wszystkich zjawisk podane są w czasie wschodnio-europejskim (czasie letnim w Polsce). **Uwaga:** jeśli nastąpi zmiana czasu i powrót do czasu środkowo-europejskiego, należy od każdego podanego w Kalendarzu momentu **odjąć 1h.**

Zakrycia gwiazd przez Księżyce

<table>
<thead>
<tr>
<th>Data UT</th>
<th>Nr, nazwa i jasność gw., zjawisko</th>
<th>Moment (minuty) i kąty pozycyjne</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>5813 43 Sgr 5,0 p</td>
<td>P 42,0 Wr 64° K 77°</td>
</tr>
<tr>
<td>218</td>
<td>5814 19°5387 6,8 p</td>
<td>P 07,8 Wr 42° K 54°</td>
</tr>
<tr>
<td>219</td>
<td>5815 226B Sgr 6,4 p</td>
<td>P 68,8 Wr 155° K 148°</td>
</tr>
<tr>
<td>220</td>
<td>5816 226B Sgr 6,4 k</td>
<td>P 25,6 Wr 186° K 174°</td>
</tr>
<tr>
<td>222</td>
<td>5817 18°5336 7,0 p</td>
<td>P 03,0 Wr 13° K 348°</td>
</tr>
<tr>
<td>820</td>
<td>5818 89 Psc 5,3 k</td>
<td>P 08,9 Wr 274° K 312°</td>
</tr>
<tr>
<td>1020</td>
<td>5819 11°445 5,9 k</td>
<td>P 55,5 Wr 290° K 330°</td>
</tr>
<tr>
<td>1126</td>
<td>5820 48 Tau 6,4 k</td>
<td>P 282° Wr 302° K 96°</td>
</tr>
<tr>
<td>1127</td>
<td>5821 γ Tau 3,9 p</td>
<td>P 70° Wr 60° K 30°</td>
</tr>
<tr>
<td>1625</td>
<td>5822 90B Cas 6,3 k</td>
<td>P 310° Wr 350° K 75°</td>
</tr>
<tr>
<td>2918</td>
<td>5823 19°3242 7,0 p</td>
<td>P 282° Wr 302° K 96°</td>
</tr>
<tr>
<td>2919</td>
<td>5824 19°5255 6,7 p</td>
<td>P 70° Wr 60° K 30°</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>718</td>
<td>5825 n Cet 4,4 k</td>
<td>P 56,7 Wr 115° K 44°</td>
</tr>
<tr>
<td>719</td>
<td>5826 n Cet 4,4 k</td>
<td>P 52,7 Wr 280° K 240°</td>
</tr>
<tr>
<td>920</td>
<td>5827 89 Tau 5,8 k</td>
<td>P 13,6 Wr 255° K 292°</td>
</tr>
<tr>
<td>920</td>
<td>5828 α Tau 4,8 k</td>
<td>P 31,0 Wr 215° K 255°</td>
</tr>
<tr>
<td>1027</td>
<td>5829 130 Tau 5,5 k</td>
<td>P 14,9 Wr 200° K 255°</td>
</tr>
<tr>
<td>2715</td>
<td>5830 266 Sgr 6,1 p</td>
<td>P 59,5 Wr 72° K 72°</td>
</tr>
<tr>
<td>3019</td>
<td>5831 192 Aqr 6,8 p</td>
<td>P 20,1 Wr 12° K 12°</td>
</tr>
<tr>
<td>3022</td>
<td>5832 204 Aqr 6,6 p</td>
<td>P 18,2 Wr 68° K 68°</td>
</tr>
</tbody>
</table>

Zrúdło: Rocznik Astronomiczny Obserwatorium Krakowskiego. Objawienia – patrz numer poprzedni „Uranii”. Momenty podano w czasie uniwersalnym.

L. ZAJDLER
CONTENTS

P. D. Maley — A plan for intercepting Asteroid Occultation shadows.

K. Ziolkowski — Cosmic investigations in Poland (II).

H. Korpikiewicz — Craters on the Moon and on the Earth.

Chronicle: A note in an Arabian manuscript on the supernova of the year 1054 — Supernova remain of the year 1181 — Alfa and Proxima Centauri — Dimensions of the Sun according to modern measurements — Magnitude of Uran's rings. — Comets and asteroids near by the Earth.

Historical chronicle: Leopold Matkiewicz.

New books.

Astronomical Calendar.

Lunar occultations of stars.

СОДЕРЖАНИЕ

П. Д. Малей — План наблюдений покрытий звёзд малыми планетами.

К. Зиолковский — Космические исследования в Польше (II).

Г. Корпи кевич — Кратеры на Луне и Земле.

Хроника: Упоминание о сверхновой 1054 г. в арабской рукописи — Реликты сверхновой 1181 г. — Альфа и Проксима Центавра — Размеры Солнца по современным измерениям — Размеры кометы Урана — Кометы и малые планеты вблизи Земли.

Наблюдения: Солнечная активность и биология.

Историческая хроника: Леопольд Маткевич.

Новые книги.

Астрономический календарь.

Покрытия звёзд Луной.
Indeks 38001
SPIS TREŚCI

Michał Heller — Ewolucja Kosmosu i kosmologii.

Stanisław R. Brzostkiewicz — Fotoreportaż z Jowisza.

Marek Szczepański — XXII Olimpiada Astronomiczna.

Fotoreportaż uzupełnia jeden z notatek naszej Kroniki.

Kronika historyczna: 300 lat „Connaissance des Temps” — Johann Daniel Titius (1729—1796).

Nowości wydawnicze.

Kalendarzyk astronomiczny.
1. **Kierunki badań**

2. **Robertson i Walker: symetrie Wszechświata**

Zainteresowania Howarda Percy’ego Robertsona teorią względności rozpoczęły się od dwóch prac [1, 2], stanowiących części jego rozprawy doktorowej przedstawionej w 1925 r. w Kalifornijskim Instytucie Technologicznym. Obydwie prace dotyczyły matematycznych aspektów teorii Einsteina. Pierwsza szerzej znana kosmologiczna praca Robertona opublikowana w 1928 r. [3] była poświęcona analizie rozwiązania de Sittera; niezależnie od Lemaître’a (por. rozdz. II) autor wykazał, że model de Sittera nie jest statycznym lecz stacjonarnym, tzn. rozszerza się, ale w taki szczególny sposób, że „zawsze wygląda tak samo”.

Michał Heller – Tarnów

EWOLUCJA KOSMOSU I KOSMOLOGII

XII. Geometria i termodynamika Wszechświata

258 **URANIA** 9/1979
Następny rok przyniósł kolejną pracę, ważną dla dalszego rozwoju kosmologii [4]. Robertson sformułował w niej geometryczne założenia przyjmowane dotychczas przy konstruowaniu modeli kosmologicznych i rozważał wszystkie możliwe przestrzenie zgodne z tymi założeniami. Założenia te są następujące: (1) istnieje taki globalny (tzn. pokrywający cały Wszechświat) układ współrzędnych, w którym czasoprzestrzeń da się rozłożyć na czas kosmiczny i prostopadłe do niego przestrzenie chwilowe (por. rys. 1); (2) przestrzenie chwilowe są jednorodne (nie posiadają wyróżnionych punktów) i izotropowe (nie posiadają wyróżnionych kierunków).

Ważnym pojęciem geometrycznym jest pojęcie metryki przestrzeni. Jest to wzór wyrażający odległość między dwoma „dowolnie bliskimi” punktami danej przestrzeni. Po kształcie metryki można rozpoznać, jakiej geometrii podlega (lokalnie) dana przestrzeń. Robertson w swojej pracy z 1929 r. podał najogólniejszy kształt metryki czasoprzestrzeni spełniającej założenia (1) i (2). Okazało się, że przestrzenie chwilowe, zgodne

![Rys. 1. Czas kosmiczny (A) i przestrzenie chwilowe (B) (dwa wymiary przestrzenne zostały pominięte na rysunku).]
z założeniem (2), muszą być przestrzeniami o stałej krzywiznie, krzywizna ta może być zerowa (przestrzenie płaskie, jak na rys. 1), dodatnia (jak np. w statycznym modelu Einsteina) lub ujemna (tzw. geometria Łobaszewskiego).

Metrykę znalezioną przez Robertsona nazywa się dziś metryką Robertsona—Walkera. Drugie nazwisko pojawiło się w tym określeniu dla uczczenia innego uczonego, który położył nie mniejsze zasługi w badaniu geometrii Wszechświata.

Warto jeszcze wspomnieć często cytowaną pracę Robertsona z 1933 roku [11]; jest to przeglądowy, prawie monograficzny artykuł, stanowiący niejako podsumowanie całej dotychczasowej kosmologii relatywistycznej. Należy jednak pamiętać, że była ona wówczas bardzo młodą dyscypliną naukową, znajdującą się ciągle jeszcze w pierwszej fazie gwałtownego rozwoju.
Napisanie przegląduowego artykułu w takich warunkach wymagało przepracowania dużych partii materiału od nowa. W „Dodatku” do pracy (w części „C” dodatku) autor przedstawia krótko metodę badania symetrii przestrzennych przy pomocy pojęciowego aparatu grup ciągłych. Na uwagę zasługuje bibliografia dołączona do artykułu, zawiera ona kompletną listę prac kosmologicznych, jakie ukazały się w latach 1917—1932. Nieoceniona pomoc dla wszystkich interesujących się historią kosmologii!

3. Tolman: termodynamika Kosmosu

W rozdziale VIII zetknęliśmy się z rozumowaniem Eddingtona, który — przyjawnszy wzrost entropii we Wszechświecie za wskaźnik kierunku upływania czasu — dowodził, że ewolucja Kosmosu zakończy się, gdy wzrost entropii osiągnie maksimum. Ale Eddington do swoich raczej intuicyjnych rozważań wykorzystywał drugą zasadę termodynamiki w jej ujęciu klasycznym. Tymczasem w sformułowanej przez Tolmana termodynamice relatywistycznej druga zasada uległa istotnej modyfikacji. W przypadku relatywistycznym w układzie izolowanym, gdy zachodzi w nim procesy nieodwracalne, entropia wzrasta, ale w odróżnieniu od przypadku klasycznego wzrost ten nie musi osiągać maksimum. Równowaga termodynamiczna zależy nie tylko od temperatury ale i od potencjałów grawitacyjnych. Może się tak zdarzyć — a nawet jest to częstszą sytuacją — ze mimo równości temperatur, potencjały grawitacyjne będą różne w różnych miejscach i wówczas entropia będzie wzrastać nieograniczenie, nigdy nie osiągając wartości maksymalnej.
Jeśli drugą zasadę termodynamiki relatywistycznej zastosować do Wszechświata jako całości, to wprawdzie nadal może ona służyć za wskaźnik kierunku czasu, ale nie prowadzi już do wniosku o nieuchronnej śmierci cieplnej Wszechświata. Nie można winić Eddingtona za to, że w 1931 r. nie znał termodynamiki relatywistycznej — ta gałąź fizyki była wówczas dopiero w stanie powstawania — ale nie można wybaczać dzisiejszym dyskusantom zagadnienia „śmierci cieplnej” Wszechświata, gdy uparcie nie biorą pod uwagę istnienia termodynamiki relatywistycznej.

Tolman odczuwał wyraźną predykcję do oscylującego modelu Wszechświata, „trwającego” nieskończenie długo. Każdy cykl ewolucyjny takiego modelu zaczyna się i kończy stanem osobliwym z nieskończoną gęstością materii w zerowej objętości. Z matematycznego punktu widzenia dwóch cykli nie da się ze sobą gładko skleić, z fizycznego punktu widzenia w osobliwości ginie informacja o stanach ją poprzedzających (w przypadku osobliwości początkowej) lub następujących po niej (w przypadku osobliwości końcowej). Mimo to Tolman wierzył, iż „jest rzeczą oczywistą, że po skurczeniu się do zera może nastąpić tylko odnowiona ekspansja” [15].

Rys. 2. Kosmologiczny model Tolmana.

Tolman wraz ze swoim współpracownikiem Morganem Wardem [15] wykazali, że jeżeli w modelu oscylującym zachodzą procesy nieodwracalne, to okres trwania poszczególnych cykli wydłuża się, a ich amplituda rośnie (rys. 2), w fazie rozszerzania się Wszechświata entropia wzrasta, w fazie kurczania się maleje, ale w kolejnych maksimach ekspansji entropia jest coraz większa. W ten sposób Wszechświat może oscylować nieograniczenie. Jednakże problem przejścia przez osobliwości
nadal pozostał nierozwiązany. Tolman na wszelki wypadek na wykresie pozostawił luki, nie narysował, jak sobie te przejścia wyobraża.

4. Dwie monografie

Tolman nie tylko stworzył termodynamikę relatywistyczną i zastosował ją do kosmologii, przedtem jeszcze interesował się geometrycznymi własnościami modeli kosmologicznych, ale nie abstrakcyjnie jak Robertson i Walker, lecz zawsze w ścisłym związku z astronomicznymi obserwacjami [16—19]. Tolman wkrótce stał się jednym z najwybitniejszych znawców teorii względności i kosmologii. W r. 1934 ukazała się jego obszerna monografia zatytułowana „Teoria względności, termodynamika i kosmologia” [20]. Z książki tej uczyły się następne pokolenia relatywistów, dziś jeszcze często sięga się do niej, by przypomnieć sobie podstawowe definicje lub sprawdzić zasadnicze formuły.

Jeszcze na długo przed ukazaniem się monografii Tolmana znane były całościowe opracowania teorii względności. Do pierwszych należą Hermana Weyla „Przestrzeń — czas — materia” [21], pierwsze wydanie w 1922 r., i Eddingtona „Matematyczna teoria względności” [22], pierwsze wydanie w 1923 r. Obie te książki powstawały w okresie, gdy teoria względności była owiana jeszcze atmosferą nowości i tajemniczości, dlatego też kładą one nacisk na fizyczne, matematyczne, a nawet filozoficzne podstawy nowej teorii. Tolman traktuje teorię względności jako już standardowe narzędzie fizyka-teoretyka i koncentruje uwagę na jej termodynamicznych i kosmologicznych zastosowaniach.

W kosmologicznej części swojej książki Tolman korzystał z przeglądu arcykuła Robertsona [11] lub — biorąc pod uwagę krótkość czasu, jaki dzieli ukazanie się artykułu Robertsona i książki Tolmana — z tych samych źródeł co Robertson. Jednakże poglądy na kosmologię tych dwóch autorów różniły się zasadniczo. Po pierwsze Robertson był matematykiem i widział we Wszechświecie raczej działanie praw symetrii niż praw dynamiki; po drugie, Robertson — w przeciwieństwie do Tolmana — żywił poważne zastrzeżenia co do słuszności ogólnej teorii względności; nie bez wpływu na to stanowisko pozostawały poglądy Milne’a, które swoją dedukcyjną prostotą musiały budzić sympatię matematyka.

Robertson uważał, że model kosmologiczny należy budować w oparciu o możliwie najmniejszą liczbę założeń, kolejne założenia trzeba wprowadzać dopiero wtedy, gdy są niezbędne. A więc równania Einsteina powinny być uwzględnione dopiero w ostatnim etapie konstruowania modelu Wszechświata. W zasadzie modelem kosmologicznym dla Robertsona jest każda czasoprzestrzeń posiadająca metrykę Robertsona—Walkera plus założenia dotyczące rozchodzenia się światła i ruchu obserwatorów fundamentalnych (zresztą założenia te Robertson w sposób ewidentny zapożyczył od teorii względności). Tak rozumianą klasę modeli kosmologicznych umówmy się nazywać „kosmologią Robertsona”. Kosmologia Robertsona zawiera jako swoje szczególne przypadki kosmologię Milne’a i modele Wszechświata Friedmana—Lemaître’a. Te ostatnie są to modele kosmologii Robertsona, będące dodatkowo rozwiązaniami einsteinowskich równań pola grawitacyjnego.

Rozwój nauki zwykle dokonuje się dzięki napięciom, jakie rodzą się w różnicy poglądów.

Przypisy

Pierwsze zadanie swej wieloletniej misji międzyplanetarnej „Voyager-1” wypełnił znakomicie. W dniu 5 marca 1979 roku — zgodnie z „rozkładem jazdy“* — minął Jowisza w odległości 278 tys. km i przekazał na Ziemię około 15 tys. unikalowych zdjęć planety oraz pięciu jej najbliższych księżyców. Otrzymano je za pomocą dwóch kamer telewizyjnych: jedna z obiektywem szerokokątnym o ogniskowej 200 mm i światłosile f/2, druga z teleobiektywem o ogniskowej 1500 mm i światłosile f/8,5. Każde zdjęcie składa się z 800 rządów liczących po 800 punktów, zawierających 5220 tys. bitów informacji. Zdolność rozdzielcza większości zdjęć Jowisza wynosi 400 km, ale na fotografii uzyskanych z najbliższej odległości widać nawet szczegóły o rozmiarach 6 km. Toteż wnioskował, że analiza ich analiza winna dostarczyć wielu nieznanych dotąd danych o przyrodzie największej planety Układu Słonecznego.

Jowisz już w latach 1974 i 1975 był fotografowany z bliska przez sondy „Pionier-10” i „Pionier-11”, a mimo to wiadomości o nim są ciągle bardzo skąpe. Nie wiadomo nawet, czy wnętrze tej gigantycznej planety jest zbudowane — tak samo jak wnętrza gwiazd — prawie wyłącznie z wodoru, który od stanu gazowego przechodzi w stan półpłynny, w końcu zaś przyjmuje postać metaliczną? A może pod grubą warstwą wodorowego oceanu znajduje się jądro kamienno-żelazne, mające — według teoretycznych rozważań — rozmiary globu ziemskiego, lecz masę około 40 razy większą od masy naszej planety? Niestety, pytania powyższe muszą na razie pozostać bez odpowiedzi. Być może będzie jej można udzielić dopiero w połowie lat osiemdziesiątych, kiedy to po orbicie okołojowiszowej zaczęcie krążyć pierwszy sztuczny satelita, a w atmosferę planety „wrzucony” zostanie próbnik z aparaturą naukową. Fotograficzny bowiem program „Voyagerów”, opracowany pod kierunkiem Bradforda A. Smitha z Uniwersytetu Arizońskiego, ma dużo skromniejsze zadania. Uczniem chcą po prostu uzyskać takie obrazy wielkich planet, aby można było zbadać ruchy materii w zewnętrznych warstwach ich atmosfer i lepiej poznaję naturę zachodzących tam zjawisk nadzwyczajnych. Jest to też jedyna droga uzyskania bliższych informacji o pierścieniach, którymi — jak się

okazuje — nie tylko Saturn może się szczycić. A wreszcie „Voyagery” mają dostarczyć konkretnych wiadomości o powierzchniach księżyców planet grupy jowiszowej.

Już pobieżne studia zdjęć otrzymanych za pomocą „Voyager-1” pokazują orgię barw na zewnętrznej powłoce atmosfery Jowisza. Wyraźnie także na nich widać, że tamtejsze chmury mają bardzo złożoną, a przy tym szybko zmieniającą się strukturę. Świadczy to niewątpliwie o burzliwych procesach zachodzących w atmosferze tej olbrzymiej planety. Wyjątkowo gwałtowne zjawiska obserwuje się w Wielkiej Płame Czerwonej, na zdjęciach uzyskanych z najbliższej odległości przypominającej oko ziemskiego cyklonu. W jej wnętrzu znajduje się co najmniej pięć potężnych wirów, obracających się z nadzwyczaj dużymi prędkościami w jednym i tym samym kierunku. Nadal jednak pozostaje otwarty problem stabilności Wielkiej Czerwonej Płamy i przyczyna jej czerwonego zabarwienia. Ale może jakiś przybliżony obraz tego niezwykłego zjawiska będzie można wyrobić sobie po analizie wyników badań dokonywanych w różnych obszarach widma?

Niemniej interesującymi dla planetologów okazały się zdjęcia najbliższych księżyców Jowisza, zwłaszcza czterech największych, zwanych — od nazwiska ich odkrywcy — galileuszowymi”. Io i Europa podobne są pod względem wielkości, masy i gęstości do naszego Księżyca, a Ganimedes i Callisto rozmiarami przypominają Merkurego, lecz w porównaniu z nim mają bardzo małe gęstości. Najprawdopodobniej ich globy składają się w połowie z materiału skalnego, w połowie zaś z wody lub lodu wodnego. Ruch wirowy wszystkich czterech na skutek silnego przyciągania Jowisza od dawna jest zsynchronizowany z ruchem orbitalnym. A zatem — tak samo jak Amaltea i nasz Księżyc — zwracają ku macierzystej planecie zawsze te same półkule swych globów. Io porusza się przy tym głęboko w magnetosferze Jowisza i wyraźnie modeluje jego promieniowanie radiowe. Ponadto otoczony jest niesymetrycznym obłokiem sodowym, którego natura nie została dotąd w pełni poznana. Dlatego też program lotu „Voyager-1” przewidywał dokładne jego badanie (przelot zaledwie w odległości około 22 tys. km). Z bliska sfotografowano również małe Amaltea, przez największe teleskopy widoczne z Ziemi jedynie w postaci świetlnego punktu. Toteż dopiero zdjęcia „Voyagera-1” ujawniły, że ma on — podobnie jak księżyce Marsa i planetoidy — nieregularne kształty. Dłuższa oś jego elipsoidy mierzy około 220 km, która zaś około 130 km.
Najmniej dokładnie zbadany został Europa, gdyż „Voyager-1” minął go w dość dużej odległości. To „zaplanowane” niepowodzenie wynagrodziły zdjęcia Ganimedesa i Callisto, wykonane z odległości 112 i 130 tys. km. A ponieważ otrzymać je za pomocą niewielkich przyrządów optycznych, do złudzenia przypominają one ubiegłowieczne dagerotypy naszego Księżyca. Dotyczy to zwłaszcza zdjęć Callisto, którego powierzchnia — jak się dziś ocenia — ukształtowała się przed czterema miliardami lat. Jest ona pokryta ciemnymi plamami „mórz” oraz licznymi kraterami meteoroidalnymi, często otoczonymi — tak samo jak księżycowe kratery Tycho i Kopernik — systemami jasnych smug. Wały tamtejszych kraterów również są jasne, co najprawdopodobniej związane jest z dużą zawartością lodu w skorupach Ganimedesa i Callisto. Przypuszcza się zatem, że upadające meteoryty nie tylko wybijały w nich nieckę kraterową, ale doprowadzały także do stopienia dużej ilości lodu. Wypływająca na powierzchnię księżyków woda natychmiast oczywiście zamarzała, tworząc wokół nowopowstających kraterów złożone wały koliste. Więcej danych na ten temat powinniśmy uzyskać za pomocą „Voyagera-2”, gdyż ma się on bardziej zbliżyć do Ganimedesa niż „Voyager-1”.

Trudno jednak powiedzieć, czy planowane badania wzbudzą wśród planetologów taki sam zachwyt, jaki wywołały otrzymane za pomocą „Voyagera-1” zdjęcia Io. Księżyć ten — zdaniem naukowych komentatorów NASA — podobny jest do neapolitańskiego podpłomyka, zwanego po włosku „pizzą”. Na jego czerwono-pomarańczowej powierzchni przeważają jasne tereny, chociaż nie brak tam również ciemnych „mórz” i kraterów poświadczających z reguły ciemne dna. Jest ich jednak niewielka liczba, co dla planetologów stanowi pewną niespodziankę, gdyż nie znamy mechanizmu chroniącego powierzchnię księżyca przed upadkiem meteorytów. Ale raczej należy to tłumaczyć istnieniem na Io czynnych wulkanów i wypływającą z nich cieczą. Może to być — zdaniem Laurence Soderbloma z Instytutu Geologicznego we Flagstaff — płynny amoniak. Jego wylew i pył wulkaniczny mogą niwelować powierzchnię Io, ściągając — jak ocenia ten uczony — nie więcej niż 10—100 milionów lat. Największym jednak zaskoczeniem dla wszystkich było stwierdzenie, że jest on ciągle aktywnym globem, o czym świadczą sfotografowane przez „Voyagera-1” erupcje wulkaniczne. Czyżby był młodszy od naszego Księżyca, który pod względem rozmiarów jest do niego zbliżony, ale na którym działalność wulkaniczna ustala przed miliardami lat? A może...
jest to związane z silnym polem magnetycznym Jowisza i jego pasami radiacji?

Przed dwudziestu laty Siergiej K. Wsiechswiatski z Uniwersytetu Kijowskiego wystąpił z hipotezą, że na „galileuszowych” księżycach Jowisza mogą znajdować się czynne wulkany i wyryzucana w czasie ich wybuchów materia może stanowić „budulec” krótkookresowych komet. Ten niezwykły pogląd częściowo się sprawdził, chociaż swego czasu był ostro krytykowany. Podobne stanowisko zajęto w stosunku do wysuniętej przez Wsiechswiatskiego w roku 1960 hipotezy na temat pierścienia Jowisza, a przecież i jego istnienie potwierdziły zdjęcia otrzymane za pomocą „Voyagera-1”. Został on sfotografowany w momencie, gdy sonda przechodziła przez płaszczyznę równika planety i była 16 km przed największym do niej zbliżeniem. Odkrycie to wpłynęło na zmianę programu fotograficznego „Voyagera-2”, który w lipcu 1979 roku przeleci obok Jowisza i istniejący wokół niego pierścień sfotografuje z różnych stron. Uczeni chcą bowiem poznać jego gęstość i dowiedzieć się z ilu części się składa.

Nowoodkryty pierścień Jowisza ma najwyżej 30 km grubości i nie więcej niŜ 9 tys. km szerokości, oddalony zaś jest od środka planety o około 129 tys. km. W tym miejscu należy przypomnieć, że pierścień Saturna ma prawie 65 tys. km szerokości. W porównaniu z nimi pierścień Jowisza jest bardzo wąski, a ponieważ leży niemal że w płaszczyźnie jego orbity, z Ziemi nie można go dostrzec przez wielkie nawet teleskopy, gdyż stale zwraca ku nam swój „profil”. Nie uchwyciły go zresztą i kamery „Pionierów”, toteż trudno dziś powiedzieć, czy hipoteza Wsiechswiatskiego wypływała faktycznie z obserwacji, czy też raczej mamy tu do czynienia z intuicją uczonego. Ta druga ewentualność wydaje się być bliższa prawdy, gdyż swą hipotezę opierał on na rzekomo zaobserwowanym spadku jasności „galileuszowych” księżyców Jowisza. Zjawisko powyższe — zdaniem radzieckiego uczonego — ma zachodzić wówczas, gdy księżycy podczas zaćmień przechodzą przez płaszczyznę równika planety. Wtedy ich blask ma być osłabiany przez pierścienie składający się z pyłu i okruchów skalnych, obiegających Jowisza — jak to wynika z trzeciego prawa Keplera — raz na około 7 godzin. Ale w świetle danych uzyskanych za pomocą „Voyagera-1” wydaje się wątpliwe, by takie zjawisko było możliwe do zaobserwowania z Zie-

* Artykuł nin. opracowano w maju 1979 r.
mi. Spadek jasności księżyców Jowisza spowodowany zakryciem ich przez wąski pierścień musi być bardzo mały i zapewne mieści się w granicach błędu pomiaru.

Przy okazji warto chyba wspomnieć o podobnych odkryciach, dokonanych rzekomo przez znanych astronomów angielskich — Williama Herschela i Williama Lassela. Pierwszy podobno już w roku 1787 obserwował pierścień Urana, drugi zaś miał w roku 1846 dostrzec pierścień przy Neptunie. O ile jednak Herschel zdawał sobie sprawę z niedoskonałości swych obserwacji i nie bardzo wierzył w dokonane przez siebie odkrycie, to Lassel był pewny swych obserwacji. Wkrótce zresztą domniemanie istnienie pierścieni Neptuna potwierdzał James Challis, dyrektor obserwatorium w Cambridge, który wraz ze swym asystentem mieli je widzieć w styczniu 1847 roku. Były to oczywiście najwykleniejsze pomyłki obserwacyjne, chociaż ich podłoże nie znamy. Lecz dziś już wiadomo na pewno, że Herschel nie mógł obserwować pierścieni Urana, gdyż są one bardzo słabe i dopiero w roku 1977 zostały odkryte dzięki zastosowaniu odpowiedniej techniki obserwacyjnej. Jeżeli zaś chodzi o Neptuna, to dotąd nie wiemy, czy posiada on pierścienie.

Odkrycie pierścieni Jowisza i Urana musi niewątpliwie wpłynąć na zmianę niektórych poglądów kosmogonicznych. Do niedawna bowiem sądzono, że pierścień Saturna są czymś wyjątkowym w Układzie Słonecznym i że powstały one z rozpadu najbliższego księżyca. Tymczasem ich istnienie wokół planet wielkich wydaje się być regułą i w związku z tym należy się zastanowić, czy przypadkiem nie są to resztki materii, pozostałe po utworzeniu się danej planety? Już z tego chociażby względu tak ważne będą badania Saturna, do którego aktualnie zbliża się sonda „Pionier-11”. Pierwotnie zakładano, iż przeleci ona między globem planety a jej wspaniałymi pierścieniami, dzięki czemu można by o nich uzyskać unikalne wprost informacje. Zrezygnowano jednak z tego atrakcyjnego wariantu ze względu na program badawczy „Voyagera-2”. Ma on bowiem badać Urana i Neptuna, toteż konieczne jest, by minął Saturna bezpiecznie. Dlatego też trasę tę przebędzie „Pionier-11” i sprawdzi, czy planowane zbliżenie „Voyagera-2” do Saturna jest bezpieczne. Gdyby tak nie było, wówczas będzie jeszcze dość czasu, aby skorygować jego trajectorię. Nie można przecież dopuścić do tego, żeby aparat sondy uległa zniszczeniu. Nie uzyskalibyśmy wtedy żadnych informacji nie tylko o Uranie i Neptunie, ale także i o Sa-
turnie. Wyniki badań są przecież wpierw rejestrowane na taśmie magnetycznej i dopiero po pewnym czasie przekazywane na Ziemię.

MAREK SZCZEPANSKI — Chorzów (Planetarium)

XXII Olimpiada Astronomiczna

Po raz dwudziesty drugi Planetarium i Obserwatorium Astronomiczne im. Mikołaja Kopernika w Chorzowie, wspólnie z Kuratorium Oświaty i Wychowania w Katowicach, zorganizowało i przeprowadziło Olimpiadę Astronomiczną, olimpiadę adresowaną do młodzieży szkół ponadpodstawowych zainteresowanej tematyką astronomiczną.

W I etapie tegorocznej Olimpiady sklasyfikowanych zostało 263 uczniów reprezentujących 153 szkoły z terenu 44 województw kraju. Zdecydowaną większość uczestników stanowili uczniowie liceów ogólnokształcących — 96/0, z których 78% uczęszczało do klas o profilu matematyczno-fizycznym, natomiast 66% do klas maturalnych. Najliczniej reprezentowane były województwa: katowickie, łódzkie, warszawskie i radomskie.

W trakcie trzech stopni zawodów należało rozwiązać 24 zadania. Tematyka obejmowała obok zagadnień typowo astronomicznych również problemy o charakterze matematyczno-fizycznym mające jedynie fabułę astronomiczną. I etap składał się z dwóch serii zadań. W pierwszej należało, korzystając z zaleca-
nej literatury, udzielić odpowiedzi na 5 spośród 6 dostarczonych przez organizatorów zadań. Zestaw ten miał charakter zgłoszeniowy i obejmował problemy stosunkowo proste o małym stopniu trudności. Wszyscy, którzy zgłosili się do startu w Olimpiadzie otrzymali zestaw drugiej serii, również do opracowania w domu a polegający na rozwiązaniu 4 spośród 5 zadań teoretycznych oraz jako warunek konieczny jednego (z 3 do wyboru) zadania obserwacyjnego.

Łącznie pierwszy szczebel eliminacji obejmował 10 zadań. Do II etapu Olimpiady — zawodów okręgowych, przeprowadzonych w Warszawie, Poznaniu, Piotrkowie Trybunalskim i Chorzowie — dopuszczono 106 uczniów z 34 województw. Termin zawodów, przewidzianych początkowo na 20 lutego, w ostatniej chwili musiał ulec zmianie z powodu niesprzyjających warunków atmosferycznych, które stały się przyczyną trudności komunikacyjnych na terenie kraju. W związku z tym eliminacje przeprowadzono 1 marca.

Na rozwiązanie zestawu zadań półfinałowych uczestnicy mieli cztery godziny zegarowe czasu. W wyniku analizy rozwiązań do III etapu tegorocznej Olimpiady zakwalifikowano 30 uczestników z 18 województw. Zawody finałowe przeprowadzono w dniach 12 i 13 marca tradycyjnie pod sztucznym niebem w Planetarium Śląskim. Mimo dość trudnego zestawu 10 zadań, obejmujących zagadnienia teoretyczne i praktyczne z różnych działów astronomii oraz wymagającego zaawansowanego aparatu matematyczno-fizycznego, zwycięzca uzyskał 80% możliwych do zdobycia punktów a zdobywca drugiego miejsca 75%. Zapewne, gdyby nie ograniczenia czasowe, wyniki byłyby jeszcze lepsze, co świadczy o dużych zdolnościach i możliwościach czołowych uczestników finału oraz bardzo dobrej znajomości podstaw astronomii osiągniętej w większości przypadków w drodze samokształcenia.

Ostatecznie 9 uczestnikom przyznano „Dyplom Laureata Olimpiady Astronomicznej” uprawniający do wstępu bez egzaminów na kierunki astronomii i fizyki Uniwersytetów oraz fizyki w Wyższych Szkołach Pedagogicznych.

Podczas uroczystości zakończenia Olimpiady, która odbyła się 14 marca w Planetarium Śląskim, ogłoszono końcową klasyfikację, okolicznościowe dyplomy wręczył uczestnikom finału prof. dr hab. Eugeniusz Rybka, a nagrody rzeczowe — Kurator Oświaty i Wychowania w Katowicach dr Tadeusz Pałys. Dodatkowe nagrody, ufundowane przez PTMA, wręczył prezes Zarządu Głównego — Maciej Mazur.
Laureaci XXII Olimpiady Astronomicznej przeprowadzonej w roku szkolnym 1978/79:
1) Michał Pawlak — I L.O. im. B. Chrobrego, Piotrków Trybunalski;
2) Paweł Moskalik — I L.O. im. St. Staszica, Zgierz;
3) Artur Thielmann — II L.O. im. Jana III Sobieskiego, Grudziądz;
4) Jan Cieśliński — II L.O., Opole;
5) Dariusz Lis — IV L.O. im. H. Sawickiej, Kielce;
6) Marek Ancukiewicz — L.O., Środa Wlkp.;
7) Wacencjusz Grajewski — VIII L.O. im. W. Piecka, Katowice;
8) Sławomir Kruczkowski — II L.O. im. Jana II Sobieskiego, Grudziądz;

Pozostali uczestnicy finału olimpiady:
Tadeusz Kupiecki III L.O. — Wrocław
Jarosław Wójcik IX L.O. im. K. Hoffmanowej — Warszawa
Jerzy Piśmiński I L.O. im. F. Dembowskiego — Gliwice
Jacek Serafin L.O. im. T. Kościuszki — Myślenice
Łukasz Kalinowski XLI L.O. im. J. Lelewela — Warszawa
Bogdan Przetacznik L.O. im. St. Leszczyńskiego — Jasło
Andrzej Stankiewicz VI L.O. im. J. Kochanowskiego — Radom
Wacław Waniak IV L.O. im. B. Chrobrego — Bytom
Marek Woźniak III L.O. im. M. Kopernika — Szczecin
Tomasz Liszka L.O. im. Króla Kazimierza W. — Olkusz
Andrzej Szymański XVIII L.O. im. J. Śniadeckiego — Łódź
Jacek Wojtkiewicz XI L.O. — Wrocław
Wojciech Nowak VII L.O. im. J. Dąbrowskiego — Zielona Góra
Artur Starobrat L.O. Oddziału Gwardii Ludowej im. T. Kościuszki — Kraśnik
Jacek Jasiński L.O. im. J. Sobieskiego — Wejherowo
Piotr Jarańkowski I L.O. im. T. Kościuszki — Konin
Jacek Stryszynski III L.O. — Poznań
Andrzej Czański I. L.O. X Zielona Góra
Jacek Siemaszko V L.O. im. A. Asnyka — Szczecin
Anna Pacześniak XIV L.O. im. K. Gottwalda — Warszawa
Wybrane tematy zadań XXII Olimpiady Astronomicznej

1. Dla gwiazd ciągu głównego temperaturę w centrum gwiazdy z pewnym przybliżeniem można obliczyć przy pomocy wzoru:

\[T_w = T_{ws} \left(\frac{m}{m_s} \right) \left(\frac{R_s}{R} \right) \]

gdzie \(m \) i \(R \) oznaczają odpowiednio masę i promień gwiazdy a \(T_w \) — temperaturę w centrum gwiazdy; natomiast \(m_s, R_s \) i \(T_{ws} \) — analogiczne wielkości dla Słońca.

Oceń temperaturę w centrum składników \(A \) i \(B \) gwiazdy podwójnej zakładając, że obydwa składniki należą do ciągu głównego i posiadają identyczne widma.

W obliczeniach wykorzystaj następujące dane dotyczące składników \(A \) i \(B \):
- temperatura powierzchniowa \(T_A = T_B = 7200 \) K,
- jasność widma \(m_A = m_B = 4,5 \),
- paralaksa heliocentryczna \(\pi_{A} = \pi_{B} = 0,040 \),
- okres obiegu \(P_{AB} = 400 \) lat,
- duża półoś orbity \(m_{AB} = 4 \),
o oraz dane o Słońcu:
- temperatura powierzchniowa \(T_s = 6000 \) K,
- temperatura w centrum \(T_{ws} = 14 \cdot 10^6 \) K,
- jasność absolutna \(M_s = 4,8 \).

2. Wiele informacji o ciałach niebieskich i Wszechświecie uzyskano w oparciu o analizę widma promieniowania elektromagnetycznego docierającego z Kosmosu.

W formie prótko zredagowanych punktów podaj istotę sposobu dochodzenia do poszczególnych informacji.

3. Kometa obiega Słońce po orbicie eliptycznej, której duża półoś \(a = 4,0 \) j.a. Pewnym refraktorem kometę tę można obserwować tylko wówczas, gdy jej odległość od Słońca \(r \leq a \). Oblicz mimośród orbity komety wiedząc, że tym refraktorem można ją jeszcze obserwować w czasie \(\Delta t = 1,0 \) rok od momentu przejścia komety przez peryhelium.

KRONIKA

Pierścień planety

Spektakularne zjawisko pięknego pierścienia otaczającego planetę Saturn (patrz np. zdjęcie na okładce majowego numeru Urania z tego ro-
ku) do niedawna intrygowalo swą wyjątkowością jako jedyny tego ro-
dzaju twór znany w świecie planet. Od dwóch lat wiadomo jednak, że
również i Uran ma swe pierścienie, a kilka miesięcy temu, dzięki fo-
tografiom przekazanym przez sondę kosmiczną Voyager 1, dowiedzie-
liśmy się o istnieniu pierścienia także wokół Jowisza.

O odkryciu pierścieni Urania w wyniku obserwacji zakrycia gwiazdy
9 wielkości w gwiazdozbiorze Wagi przez tarczę Urania 10 marca 1977
roku donosiliśmy w lipcowym numerze Uranii z 1977 roku. Te pierwsze
obserwacje wydawały się wskazywać na istnienie pięciu pierścieni otac-
zających planetę w płaszczyźnie jej równika w odległości mniej więcej
od 42 tys. do 54 tys. km od środka planety (patrz rysunek na czwartej
stronie okładki). Ze względu na bardzo małą jasność nie udało się ich
dostrzec nawet przez największe teleskopy. Ale w końcu ubiegłego roku
trzej astronomowie amerykańscy K. Mathews, G. Neugebauer
i P. Nicholson z Kalifornijskiego Instytutu Technologicznego opu-
blikowali pierwszy bezpośredni uzyskany obraz pierścieni Urania. Za
pomocą 5 m teleskopu na Mount Palomar otrzymali obrazy skanerowe
Urania i jego najbliższego otoczenia w dwóch różnych długościach fali
odpowiadających promieniowaniu podczerwonym podcerwonymu. W promieniowaniu
o długości fali 2,2 mikrona Uran jest prawie ciemny, ponieważ melan
znajdujący się w atmosferze planety niemal całkowicie je pochłania,
podczas gdy pierścienie odbijają to promieniowanie. Natomiast w pro-
meniowaniu o długości fali 1,6 mikrona Uran okazuje się znacznie
jaśniejszy od swych pierścieni. Komputerowa analiza tych skanerowych
obrazów Urania w podcerwieni doprowadziła do wyselekcyjowania obrazu pierścieni, który reprodukujemy na trzeciej stronie
okładki. Nie udało się na nim wyodrębnić poszczególnych pierścieni. Bardzo mała
zdolność odbijania promieniowania słonecznego dochodząca do
kilku procent wydaje się wskazywać na kamieniudłowę pierścienia
Urania, a nie na lodową jak w przypadku pierścienia Saturna.

Jednym z najciekawszych odkryć, uzyskanych dzięki sondzie kos-
micznej Voyager 1, która w pierwszych dniach marca 1979 roku przele-
ciała w pobliże Jowisza, jest sfotografowanie pierścienia otaczającego
największą planetę Układu Słonecznego (patrz zdjęcia na drugiej stro-
nie okładki). Ocenia się, że znajduje się on mniej więcej w odległości
57 tys. km od powierzchni Jowisza w płaszczyźnie równika planety. Jego
grubość jest prawdopodobnie niewielka, zaledwie 30 km, a szerokość
conajmniej 9000 km. Warto przypomnieć, że przed niemal dwudziestu
latach radziecki astronom S. K. Wszechwiałski wyśunal hipotezę
istnienia pierścienia Jowisza, a w 1976 roku astronomowie amerykańscy
M. Acuna i N. Ness próbowali wyjaśnić istnieniem pierścienia za-
obserwowane przez Pioneera 11 nieregularności pola magnetycznego Jo-
wisza.

Wg Sky and Telescope, Vol. 56, No. 6 i Vol. 57, No. 5.
KRYSZTOF ZIOŁKOWSKI

Poszukiwanie cywilizacji pozaziemskich

W okresie od stycznia do kwietnia 1978 roku astronom amerykański
Paul Horowitz z Uniwersytetu Harvardzkiego przeprowadził bar-
dzo intensywny nasłuch radiowy w poszukiwaniu cywilizacji pozaziem-
skich za pomocą największego obecnie na świecie radioteleskopu w Are-
cibo (Puerto Rico) o średnicy 305 m (patrz zdjęcie na pierwszej stronie
okładki). Nasłuch prowadzony był w wąskim paśmie wokół częstotli-
wości 1420 MHz odpowiadającej słynnej linii 21 cm wodoru między-gwiazdowego w oparciu o założenie, że jest to najbardziej prawdopodobna częstotliwość dla porozumiewania się we Wszechświecie. Poszukiwani objętych było 185 gwiazd podobnych do Słońca znajdujących się w odległościach do 25 parseków czyli około 82 lat świetlnych od nas, których deklinacje zawarte są w granicach od 0° do +38° (zakres widzialności radioteleskopu w Arecibo). O dokładności pomiarów może świadczyć fakt, że cały przedział częstotliwości o szerokości 1000 Hz był próbkowany co 0,015 Hz. W trakcie 100 sekundowej obserwacji co kilka milisekund wprowadzane były korekcje ze względu na obrót Ziemi. Niestety mimo takiej precyzji i aż w sumie 80 godzin obserwacji nie stwierdzono żadnych śladów emisji, które możnaby próbować interpretować jako sygnały jakiejś cywilizacji. Autor eksperymentu podkreśla, że gdyby za pomocą identycznej anteny nadawane były sygnały o mocy jednego megawata w kierunku Słońca z odległości 370 parseków, zostałyby one bez trudu na Ziemi odebrane. Czyżbyśmy więc byli jedyną cywilizacją w promieniu 25 parseków?

Wg Sky and Telescope, Vol. 56, No. 5.

Krzysztof Ziołkowski

Strumień radiowy Ziemi a możliwości SETI

W związku z możliwością odbioru sygnałów radiowych będących resztą i przeciekiem emisji wewnętrznych cywilizacji pozaziemskiej, W. T. Sullivan i jego współpracownicy z Uniwersytetu stanu Waszyngton próbować ocenić rodzaj i ilość informacji jakie otrzymać można analizując antropogeniczny strumień radiowy Ziemi, bez apriorycznej wiedzy o istnieniu naszej cywilizacji. Ze względu na wchodzące w grę odległości, niemożliwe dla podsłuchującej nas cywilizacji byłoby odczytanie pojedynczych emisji — analizie poddawano więc integralny szum radiowy Ziemi. Ogromne znaczenie dla hipotetycznych słuchaczy ma fakt bardzo nierównomiernego rozkładu ziemskich nadajników telewizyjnych. Skoncentrowane są one na wschodnim wybrzeżu USA, w Europie zachodniej oraz w południowym pasie obejmującym Japonię i Australię. 97 procent całkowitej mocy strumienia ziemskich emisji TV stanowią emisje około 2200 nadajników o mocy ponad 50 kilowatów każdy (jedynie około 15% ogólnej liczby nadajników TV na świecie). W chwili obecnej Ziemia jest jaśniejsza od Słońca jeśli pomiar jasności prowadzić w wykorzystywanym przez telewizję metrowym zakresie widma elektromagnetycznego. Opuszczający Ziemię strumień modulowany jest obrotowym ruchem dziennym Ziemi, a także jej obiegiem wokół Słońca. W pracy podano wykresy dobowej zmienności jasności, jakie obserwatorzy dysponują techniką analogiczną do naszej. Wymaganie stawiane parametrom aparatury nasłuchowej rosną o cztery rzędy wielkości, jeśli Oni chcieliby zidentyfikować zawartość pojedynczych emisji telewizyjnych (np. odróżnić Kojaka od Rumcajsa).

Klasyfikacja mgławic planetarnych

W zależności od składu chemicznego i w miarę zmniejszania się zawartości pierwiastków ciężkich, mgławice planetarne podzielone można na cztery typy:

— typ I, do którego należą mgławice bogate w hel i azot, charakteryzujące się stosunkiem He/H przekraczającym 0,14. Mają one wyraźną strukturę włóknistą, zaś ich rozkład w Galaktyce oraz charakterystyki kinematyczne upodabniają je do obiektów pierwszej populacji;

— typ II obejmujący większość mgławic planetarnych leżących w okolicach Słońca. Powstały one z gwiazd o masach rzędu 1,5 masy słonecznej. Zawartość azotu i węgla w nich jest znacznie wyższa niż w mgławicy Oriona;

— typ III do którego zalicza się mgławice planetarne z dużymi prędkościami przestrzennymi (około 60 km/s i więcej), nie należące do populacji halo i ubogie w żelazo;

— typ IV to właśnie mgławice populacji halo, wyróżniające się przy tym najniższą zawartością helu.

Czerwone giganty traczą masę

Typowy czerwony olbrzym lub nadolbrzym, otoczony przez wolno rozszerzającą się „banke” rozrzedzonego gazu i pyłu, traci w ten sposób masę wzbogacając ośrodek międzygwiezdnny. Obserwacje tego procesu dostarczają informacji o dwóch kluczowych zagadnieniach związanych z ewolucją gwiazd: wpływ utraty masy na ich skład i strukturę oraz składzie materiału wyjściowego, z którego tworzą się nowe gwiazdy. Obecność otoczki gazowej wokoło tracącej ją gwiazdy ujawniona jest przez wąskie linie absorpcyjne w widmie, nieznacznie przesunięte w kierunku niebieskim. Ponieważ linie powstają w tej części otoczki, która leży pomiędzy tarczą gwiazdy a obserwatorem ziemskim, przesunięcie dowodzi rozszerzania się otoczki. Typowa prędkość ekspansji wynosi około 10 km/s. Fotometria w podczerwonym zakresie widma elektromagnetycznego, umożliwiając badanie pyłu zawartego w otoczce, wykazała nadwyżkę jasności w pobliź 10 mikronów. Jest ona wywołana przez ziarna pyłu, absorbujące światło gwiazdy i reemitujące pochłoniętą energię w zakresie podczerwonym. Niedawne badania czerwonych olbrzymów i nadolbrzymów przeprowadziła W. Hagen za pomocą 2,2-metrowego teleskopu obserwatorium Mauna Kea na Hawajach. Dla 4 nadolbrzymów o typie widmowym M W. Hagen otrzymała następujące wielkości na stratę masy wyrażoną w jednostkach masy Słońca na rok: Betelgeuze $1,5 \times 10^{-7}$, Antares $1,3 \times 10^{-7}$, Alfa Herculis $2,8 \times 10^{-7}$, Mu Cephei $4,9 \times 10^{-7}$. Dla olbrzymów o typach M5 i M6, a także dla miryõ R Leonis i W Hydrac, typowa strata masy sięga $1,8 \times 10^{-8}$ masy Słońca na rok. Podane liczby są niepewne do dwóch rzędów wielkości, głównie ze względu na niedostateczną znajomość rozmiarów wewnętrznych promieni otoczek. Mimo tego stwierdzone wielkości strat masy są dostatecznie duże by znacząco wpływać na ewolucję gwiazd, jak konkluduje W. Hagen. Olbrzymy i nadolbrzymy późnych typów widmowych dostarczają w ten sposób około 20% materii „zwracanej” przez gwiazdy do ośrodka międzygwiezdnego. Innymi głównymi źródłami recyklikowanej materii są gorące olbrzymy, nowe i supernowe.

Z. PAPROTNY
Prędkości radialne gwiazd

Klasyczne metody pomiaru prędkości radialnej gwiazd, polegające na porównaniu ich widm otrzymanych w spektrografii szczelinowym (współpracującym z dużym teleskopem) z widmem porównawczym generowanym przez źródło standardowe, nieliczko pozwalają osiągnąć dokładność lepszą od 0,5 km/s. Ograniczenia dokładności pomiaru spowodowane są głównie różnicą drog optycznych przebywanych w teleskopie przez światło gwiazdy i światło źródła porównawczego. W roku 1973 R. i R. Griffinowie (1) zaproponowali by obserwacje prowadzić w bliskiej podczerwieni a w charakterze widma porównania wykorzystać obecne tam telluryczne (ziemskie) linie absorpcyjne pary wodnej i tlenu cząsteczkowego — składników atmosfery Ziemi. Sprawdzenie tej metody na widmie Arktura wykazało co prawda dokładność pomiaru prędkości radialnej około 25 metrów na sekundę, jednak wkrótce okazało się, że położenie linii O2 jest zmienne i zależy od ciśnienia barometrycznego, zgodnie z przewidywaniami teoretycznymi. Najnowszy pomysł, zgłoszony przez Kanadyjczyków B. Campbella i G. Walckera (2) polega na wprowadzeniu w oś optyczną teleskopu pojemnika z fluorowodem, a przez to wytworzeniu widma absorpcyjnego HF nałożonego na widmo badanej gwiazdy. Fluorowód mimo swoich wad (trujący, wyjątkowo agresywny) ma jedną poważną zaletę: liczne, ostre i dość regularnie rozłożone linie widma absorpcyjnego w obszarze wokół 870 mikrometrów, w którym widma gwiazd późnych typów wykazują bogactwo swoich linii. Wstępne rezultaty obserwacji przy użyciu widma porównawczego HF, wskazują na dokładność sięgającą 20 m/s. Dążenie do jej poprawienia stanie się zrozumiałe jeśli przypomnimy potencjalne znaczenie pomiarów prędkości radialnej gwiazd jako metody wykrycia planet wokół nich. Odpowiednikiem tych zrozumiałych zasad jest dopiero owocny prąd obserwacji, który mierzyć odchylenia ruchu własnego gwiazdy, mierzyć się tutaj jej oscylację wokół środka masy układu gwiazd — niewidzialny towarzysz, zachodzącą w linii łączącej gwiazdę z obserwatorem ziemskim. Obie metody uzupełniają się w ten sposób: astrometryczna pozwala na wykrycie towarzyszy poruszających się po orbitach, których płaszczyzny są w przybliżeniu równoległe do płaszczyzny sfery nieba, zaś oparta na pomiarze prędkości radialnej tych z orbitami silnie nachylonymi do tej płaszczyzny — najlepiej pod kątem prostym.

Przegląd zagadnień związanych z wyznaczaniem prędkości radialnej gwiazd, przedstawił niedawno A. H. Batten w artykule znacznie zatytułowym „Nowe metody i stare zasady określania gwiazdowych prędkości radialnych” (3).

Historia zmienności R Puppis

Chociaż oznaczenia gwiazd w rodzaju R Puppis zarezerwowane są wyłącznie dla obiektów o zmiennej jasności, katalogi z kilkudziesięciu ostatnich lat wymieniały R Puppis jako gwiazdę o stałej jasności. Położona w południowej części Drogi Mlecznej (dla epoki 1950.0 jej rek-
tascencja wynosi 7h38m56s a deklinacja —31°32',6), ma jasność wizualną 6,6 mgt. O jej zmienności po raz pierwszy doniósł B. A. Gould z obserwatorium miasta Cordoba (Argentyna) w roku 1879. Spostrzeżenia tego nie potwierdziły zresztą współcześni mu badacze, posługujący się jedynie wtedy dostępną techniką wizualnej oceny blasku gwiazd. W roku 1950 W. P. Bidelman z obserwatorium Yerkes opisał widmo R Puppis jako odpowiadające nadolbrzymowi klasy GO. Gwiazdę uznał nadto za najjaśniejszy składnik odległej gromady otwartej NGC 2439. Relacjonując fotometryczne badania tej gwiazdy wykonane w roku 1975, S. D. M. White z Uniwersytetu Cambridge zauważył, że R Puppis jest bardzo prawdopodobnym członkiem gromady, a co ważniejsze, że wykazuje nieznaczną zmienność blasku. Nowe obserwacje fotoelektryczne we Wiedniu podjęte przez M. J. Stifta z obserwatorium uniwersyteckiego we Wiedniu potwierdziły zmienność R Puppis. Pomiary obejmujące okres 27 dni wykazały spadek jasności o 0,19 mgt w zakresie nadfioletowym, 0,12 w świetle niebieskim i 0,06 w żółtym. Zdaniem Stifta R Puppis jest ceheidą o bardzo długim okresie i małej amplitudzie zmienności (1, 2).

(2) Information Bull. on Variable Stars, nr 1473.

Z. PAPROTNY

OSERWACJE

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 4/79

Plamotwórcza aktywność Słońca umiarkowana. Niewielki spadek aktywności w porównaniu do miesiąca marca. Średnia miesięczna względna liczba Wolfa (month mean Wolf Number) za miesiąc kwiecień 1979 r. R = 120,4

W kwietniu na widocznej tarczy Słońca zaobserwowano powstanie 34 nowych grup plam słonecznych. Wśród nich trzy duże grupy: nr 545 z maksymalną powierzchnią w dniu 15.4 ok. 1499 jedn., nr 559 z maksymalną powierzchnią w dniu 27.4 ok. 1752 jedn. oraz nr 564, dla której odnotowano maksymalną powierzchnię w dniu 30. 4 ok. 1983 jedn., i jedną grupę średniej wielkości z maksymalną powierzchnią w dniu 23. 4 ok. 650 jednostek.

Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc kwiecień 1979 r. S = 1590 • 10-6 p.p.s.

Średnia miesięczna konsekutywna liczba plamowa z 13 miesięcy za październik 1978 r. wyniosła R = 110,5.

Wskaznik zmienności plamowej cyklu (Solar Spot Variability Index) do października 1978 r. wynosił Z = 14,3.

Z dotychczasowego przebiegu cyklu w najbliższych miesiącach należy oczekiwać wzrostu plamotwórczej aktywności.

Dzienne liczby plamowe (daily Wolf Numbers) — IV. 1979:

| Data | Liczba plam
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>132</td>
<td>169</td>
</tr>
<tr>
<td>148</td>
<td>155</td>
</tr>
<tr>
<td>110</td>
<td>96, 88</td>
</tr>
<tr>
<td>77, 92</td>
<td>89, 86</td>
</tr>
<tr>
<td>123, 133</td>
<td>123, 128</td>
</tr>
<tr>
<td>118, 89</td>
<td>86, 87</td>
</tr>
<tr>
<td>117, 95</td>
<td>123, 134</td>
</tr>
<tr>
<td>142, 166</td>
<td>—, 127</td>
</tr>
</tbody>
</table>

Wykorzystano: 248 obserwacji 23 obserwatorów w 29 dniach obserwacyjnych. Obserwatorzy: J. Brylski, U. Bendel, R. Bierpiłko, W. Ka-

Raport IV 1979 o radiowym promieniowaniu Słońca

Srednie strumienie miesiąca: 8,0 (127 MHz, 30 dni obserwacji) i 171,1 su (2800 MHz, 26 dni). Srednia miesięczna wskaźników zmienności — 0,27.

W kwietniu obserwowaliśmy nieco wyższą aktywność Słońca niż w marcu. Na częstotliwości 127 MHz zaobserwowaliśmy 21 zjawisk niezwykłych, w tym 6 burz szumowych (najsilniejsza, w sensie zmienności, była burza z dnia 5 IV) i 4 wielkie wybuchy (największy, 49GB z dn. 14 IV o godz. 1441, 7 UT, osiągnął poziom 5700 su).

W pasmie 2800 MHz stwierdzono 3 zjawiska (3, 27 i 28 IV), z których największym był wybuch z dn. 27 IV (maksimum 784 su o godz. 647 UT).

Toruń, 9 maja 1979 r.

K. M. BORKOWSKI, H. WEŁNOWSKI

KRONIKA HISTORYCZNA

300 lat „Connaissance des Temps”

Już od 300 lat nieprzerwanie ukazuje się ważny francuski rocznik astronomiczny Connaissance des Temps, jeden z paru głównych roczników w skali światowej. Jego założycielem był znany astronom Jean Picard
1620—1682), a przyczyną, która go do tego skłoniła, była potrzeba po-
śiadania efemeryd dla obserwacji astronomicznych. W dodatku właśnie
na 1680 r. kończyły się wydane w Gdańsku w 1662 r. (drugie wydanie
w Paryżu w 1666 r.) przez Johanna Heckera (?—1675), krewnego He-
wéliusza, „Ephemerides motuum coelestium ab 1666 ad 1680, ex obser-
vationibus correctis Tychonis Brahe et Io. Kepleri hypotesibus phy-
sicis..." (Efemerydy ruchów niebieskich od 1666 do 1680 r. z poprawio-
nych obserwacji Tychona Brahego i z hipotez fizycznych J. Keplera).
Picard zaproponował więc opracowywanie tego rodzaju efemeryd, oczy-
wiście dla Paryża i pierwszy taki rocznik obliczył na 1679 r. Opubli-
kowany w roku poprzednim nosił on, zgodnie z ówczesnym zwy-
czajem, długi tytuł „La connaissance des temps, ou calendrier et éphe-
mérides du lever et du coucher du soleil, de la lune et des autres
planètes, avec les éclipses pour l'année 1679, calculées sur Paris, et la
maniere de s'en servir pour les autres élevations avec plusieurs autres
tables et traités d'astronomie et physique, et des éphémérides de toutes
les planètes, en figures” (Znajomość czasu, czyli kalendarzy i efemery-
dy wschodów i zachodów Słońca, Księżyca i innych planet, z zaćmie-
niami na rok 1679, wyliczone dla Paryża i sposób posługiwania się
nimi dla innych szerokości geograficznych; z licznymi innymi tabli-
cami i rozprawami astronomicznymi i z efemerydami wszystkich pla-
net w figurach).

Pierwsze roczniki Picard opracował sam, wkrótce jednak uznał tę
pracę za zbytnie obciążenie i zaczął poszukiwać kogoś, kto mógłby prze-
jąć od niego całe to przedsięwzięcie. Polecono mu obeznanego z astro-
nomię tkacza z Lisieux, Jeana Lefebvre'a (1650—1706). Dla sprawdzenia
jego umiejętności Picard powierzył mu opracowanie tablic przejść Księ-
życa przez południk. Próba ta wypadła pomyślnie i w 1682 r. Picard
sprowadził tego zdolnego tkacza do Paryża powierzając mu pracę nad
„Connaissance des Temps”. Jednocześnie Lefebvre został także człon-
kiem Akademii Paryskiej.

Lefebvre opracowywał „Connaissance des Temps” do 1701 r., w któ-
rym to roku odszedł w wyniku konfliktu z działającym na polu astro-
nomii architektem i matematykiem Philippem La Hire (1640—1718). Otóż
obaj oni przez dłuższy czas pracowali razem przy pomiarach astrono-
miczno-geodezyjnych, podczas których Lefebvre oskarżył La Hire o kra-
dzieb tablic astronomicznych. Ten właśnie zatarg odbiwszy się szerokim
echem w ówczesnych kręgach astronomicznych spowodował odejście
Lefebvre’a od „Connaissance des Temps” jak również przyczynił się
do wykluczenia go z Akademii.

W latach późniejszych opracowywaniem „Connaissance des Temps”
zajmowali się już zawodowi astronomowie. Najwybitniejszym z nich
był Joseph Jerome Lalande (1732—1808), działający na tym polu w la-
tach 1760—1775 i ponownie od 1795 r.

Rocznik ten, który obecnie nosi tytuł „Connaissance des Temps ou
des Mouvements Célestes” (Znajomość czasu czyli ruchów niebieskich)
znacznie wyprzedził inne tego rodzaju efemerydy. Następne powstały
dopiero około 100 lat później, a mianowicie angielski „Nautical Almanac
and Astronomical Ephemeris” (założony w 1767 r.) i już nie ukazujący
się niemiecki „Berliner Astronomisches Jahrbuch” (założony w 1776 r.).
Pozostałe tego rodzaju roczniki są już znacznie późniejsze.

PRZEMYSŁAW RYBKA
Johann Daniel Titius (1729—1796)

Nazwisko Titiusa wiąże się z powszechnie znaną w astronomii regułą dotyczącą odległości planet od Słońca. Ciekawa ta reguła okazała się zresztą bardzo pożyteczna.

Johann Daniel Titius (Tietz) urodził się 2 stycznia 1729 r. w Konitz w Prusach. W 1752 r. uzyskał w uniwersytecie w Lipsku stopień magistra filozofii objął tam stanowisko prywatnego docenta, które zajmował do 1756 r. Następnie został profesorem matematyki a później także i fizyki w uniwersytecie w Wittenberdze. Zmarł w Wittenberdze 16 grudnia 1796 r.

Odkrycie przez Titiusa reguły ujmującej odległości planet było właściwie przypadkowe i stanowiło zupełne uboczny efekt jego pracy. Otoż w 1776 r. przekładając na niemiecki „Contemplation de la nature” szwajcarskiego adwokata Charlesa Bonneta (1720—1793) zwrócił uwagę na fakt, że wyrażone w jednostkach astronomicznych odległości planet można przedstawić formułą

\[a = 0,4 - 0,3 \times n, \]

gddie \(n \) przybiera kolejne wartości 0, 1, 2, 4, 16, 32 odpowiednio dla planet od Merkurego do Saturna. Jak łatwo widać, liczby te, z wyjątkiem 0, stanowią kolejne potęgi liczby 2, przy czym brakuje tu trzeciej potęgi. Regułę powyższą wkrótce spopularyzował Johann Elert Bode (1747—1826), dyrektor Obserwatorium Berlińskiego i z tego powodu jest ona też znana pod nazwą reguły Titiusa—Bodego.

Reguła Titiusa, a szczególnie zaś związana z \(n = 8 \) luka sugerująca istnienie nie znanej jeszcze planety, zwróciła na siebie uwagę astronómów. Jednym z przejawów tego zainteresowania było założenie w 1800 r. przez wybitnego miłośnika astronomii Franza Xavera von Zacha (1754—1832) towarzystwa mającego na celu poszukiwanie brakującej planety. Nie zdążyło ono jednak rozwinić swej działalności, gdyż już na samym początku 1801 r. pracujący w Palermo Giuseppe Piazzi (1746—1826) przypadkowo odkrył Ceres, pierwszą planetoidę, której odległość od Słońca wkrótce okazała się zgodna z regułą Titiusa, odpowiadając właśnie \(n = 8 \).

Reguła ta była też później wykorzystywana przy wstępnych wyznaczaniach orbity nowo odkrywanych dalszych planet. Okazało się przy tym, że dość dobrze odpowiada ona promieniom orbit Urana (\(n = 64 \)) i Plutona (\(n = 128 \)), zupełnie jednak zawodzi w przypadku orbity Nep­tuna.

Dla reguły Titiusa nie znaleziono dotychczas teoretycznego wyjaśnienia i nadal nie wiadomo, czy wynika ona z jakiejs prawidłowości kosmogonicznej, czy też jest przypadkową regułą liczbową.

PREZMYSŁAW RYBKA

NOWOŚCI WYDAWNICZE

Książka jest na trzy części podzielona... Zamiarem Autorów — niedawno zmarłego w pełni sił twórczych wybitnego naukowca Bronisława Kuchowicza oraz pani Jadwigi Teresy Szymczak — było przedstawienie rozwoju i historii całego Wszechświata z punktu widzenia fizyki. Zamiast klasycznego, hierarchicznego podziału fizyki Autorzy przywołują na łamach swej książki sugestię wybitnego fizyka Jana Weyssenhoffa (1889—1972), zgodnie z którą działy fizyki rozumieć należy „kołowo”. W ten sposób megafizyka, odnoszącą się do świata galaktyk i Kosmosu jako całości, sąsiadować będzie z pikofizyką, obejmującą głównie fizykę cząstek elementarnych. „Umieszczenie pikofizyki obok megafizyki nie będzie nas dziwić, gdy zwrócony uwagę na zadziwiające związki liczbowe (patrz rozdz. 3.2) łączące ze sobą te dwie tak pozornie od siebie odległe dziedziny. Nie wiadomo, czy grawitacja odgrywająca rolę podstawowego oddziaływania fizycznego na szczeblu megafizyki, nie odgrywa analogicznej roli w pikofizyce (rozdz. 3.3).” — piszą Autorzy we wstępie zatytułowanej Materia: Jej Dzieje i Ewolucja (zamiast przedmowy).

O czym więc „naprawdę” traktuje przedstawiana pozycja popularnonaukowa, unikatowa w swoim rodzaju w polskim dorobku popularyzacji osiągnięć myśli ludzkiej? W klasycznym rozumieniu książka ma być opisem współczesnego zaawansowanej fizyki, astronauki, astrofizyki, fizyki kosmicznej, kosmologii i kosmogonii — przedmiotem dociekania Autorów są więc tak gwiazdy, galaktyki, Wszechświat (Universum), jak również prze- miany jądrowe, cząstki elementarne, rozpowszechnienie pierwiastków chemicznych. Klamrą spinającą tak różnorodne obiekty (makroskopowe i mikroskopowe) oraz zjawiska (klasyczne, kwantowe i relatywistyczne) jest jedność praw fizycznych we Wszechświecie, a także głębokie przemyślenie Autorów o istnieniu związków między wysokimi i mikroskopowymi i zjawiskami kosmicznymi (i ziemskimi) i dlatego właśnie zdecydowali się oni na taki a nie inny tytuł. Jest to więc kolejna próba całościowego ogólnego omówienia fizyki, astronauki i kosmologii, stworzenia czegoś w rodzaju „m etanauki o materii i jej ewolucji”. W odróżnieniu jednak od innych autorów B. Kuchowicz i J. T. Szymczak nie usiłują wprowadzać nowej nazwy dla tej „metanauki” pozostając przy klasycznych, tradycyjnych okresleniach, preferując jednak wyraznie fizykę jako dyscyplinę nadprzewodnią w odniesieniu do astronomii (współczesnej) i kosmologii. Można się z takim stanowiskiem nie godzić upierając się na przykład przy nadzwyciężności astronomii wobec fizyki i kosmologii, lecz w istocie rzeczy są to spory bezprzedsiłutowe, a przez to żaławe (zob. też „Urania” Nr 4, 1978, str. 122).

Część I książki, zatytułowana Evolucja Wszechświata, poświęcona jest Kosmosowi jako całości (Universum). Kolejne rozdziały przedstawiają: najważniejsze fakty obserwacyjne (oczerwienienie galaktyk, promieniowanie szczątkowe tła, paradoks Olbersa, problem nadmiaru helu), zasady kosmologiczne, kosmologię geometryczną, czyli geometrię jako naukę empiryczną (geometria = fizyka), kosmologię fizyczną, czyli „paleontologię” kosmiczną, która odwołuje się do kwantowych praw mikroświata, cząstek elementarnych, supergęstej materii. Część pierwszą kończy omówienie ery gwiazdowej i powstawania galaktyk; ponadto Autorzy zwracają uwagę na nierozwiązane problemy: osobliwość początkową, istnienie antymaterii, zagadkę kwazarów i galaktyk wybuchających.

Część II, nosząca tytuł Evolucja Obiektów Makroskopowych, poświęcona jest przede wszystkim gwiazdom! Rozdziały tej części zawie-
rają omówienie takich zagadnień jak kosmiczne formy występowania materii, jedność w różnorodności, kosmiczna synteza pierwiastków chemicznych oraz prawidłowości w ich rozpowszechnieniu, ewolucja gwiazd (jako ewolucja jądrowa) będąca podstawową formą rozwoju w skali makroskopowej, późne stadia ewolucji gwiazd, ewolucja pulsarów, kolapsarów, jak wreszcie specyficzne problemy odnoszące się do ciasnych układów podwójnych, osobliwości gwiazd osobliwych, kosmochronologii, ewolucji układów planetarnych oraz galaktyk. Autorzy zwracają szczególną uwagę na to, że powstanie teorii ewolucji gwiazd stało się możliwe dzięki osiągnięciom fizyki mikroświata, a zwłaszcza fizyki procesów jądrowych.

Część III, Ewolucja Elementarnych Składników Materii, przedstawia historię poznania struktury materii poruszając tak doniosłe zagadnienia jak hierarchia struktur, próby tworzenia jednolitej teorii pola, zdumiewające koincydencje wielkich liczb (zauważone po raz pierwszy przez Sir Arthura Eddingona), „heretyckie” postulat zmienności podstawowych stałych fizycznych, roli grawitacji w teorii cząstek elementarnych, problem światów w światach czyli ultrarelatywistyczna versja hierarchicznego Wszechświata.

Ostatni rozdział, zatytułowany Tylko Geometria, poświęcony został przestrzeni oraz jej wypełnieniu przez materię, geometrodynamice, superprzestrzeni oraz ewolucji... geometrii (!) — to jest tym wszystkim konsepcjami, które stanowią najbardziej radykalne podejście do problemu istnienia Świata. O premièrejdej model materii, zaproponowany przez Johna Archibalta Wheelera, oparty jest tylko na spekulacjach teoretycznych, u których podstaw leży dogłębnie przekonanie o pięknie i prostocie przyrody. Czy w przyszłości model ten zostanie potwierdzony? — nie wiadomo. Wiadomo natomiast, że warto i należy rozpatrywać każdą, logicznie uzasadnioną koncepcję. Nawet jeśli okaże się ona niezgodna z rzeczywistością, to będzie jednak kształcąca dla nas samych, dla naszej umiejętności myślenia.

Do ogromnie rozbudowanych trzech części książki Autorzy dołącza- ją krótkie, siedemstronicowe Zakończenie, w którym demonstrują, że ewolucja fizyczna materii jest wstępnym warunkiem ewolucji chemicznej oraz biologicznej, poruszając zarazem zagadnienie wielości zamieszkałych światów w Galaktyce. Tak sformułowane zakończenie ma stanowić (w zamysle Autorów) najbardziej przekonywający argument na rzecz jedności materii we Wszechświecie oraz uniwersalności zjawisk zachodzących na różnych poziomach organizacji materii.

Lektura prezentowanej pozycji może nastręczać Czytelnikom pewne trudności ze względu na ogromne skomprezowanie wiadomości, zbliżone już do gęstości białych karłów, albo nawet gwiazd neutronowych! Książkę należy uważnie i wnikliwie studiować — i to niejeden raz. Rozumach i zakres tematyczny Dziejów Materii jest w stanie pozwolić na pełne poznawanie wszystkiego, co autor przewiduje dla wędrówek w przestrzeni kosmicznej. Zaszczytne jeszcze, że Autorzy bezustannie podkreślają powiązania pomiędzy najodleglejszymi nawet fenomenami, co czyni lekturę tej książki bardzo mocną i interesującą.

Idea przewodnia Dziejów Materii przypomina czasami — ale jest podobnością asian odległej i lekko uchwylnie — plan kompozytyny „Rękopisu znalezionego w Saragossie” pióra hr. Jana Potockiego (1761—1815), w którym naczelna kwestia — odwieczna tajemnica życia, mi-
łości i śmierci — ukazana jest w cyklu nawzajem przenikających się
opowieści, tworzących jakby wielowymiarową, zamykającą się w sobie
przestrzeń. Tym, tak odmiennym przecież książkom wspólne jest głęboko-
ko filozoficzne zamyslenie nad Istnieniem i Istotą Świata...

Zdarzające się w tekście potknięcia, jak nie wiadomo skąd wzięty
skrot R Cor Bor (str. 212 i 214) zamiast R CrB, czy nie dość precyzyjna
klasyfikacja gwiazd fizycznie zmiennych (włączenie do jednej grupy
półregularnie pulsujących gwiazd typu RV Tauri, nieregularnie rozhly-
skowych gwiazd typu T Tauri i gwiazd nowopodobnych typu R CrB —
str. 212 i następne), nie dyskwalifikują przecież książki. Jedynie złośliwi
mogliby stwierdzić, iż przykładu nieśćclosci tylko podkreślają — wbrew
intencji Autorów — odrębność astronomii i fizyki i w związku z tym
nie ma co mówić o integracji nauk fizycznych i przyrodniczych. Jest to
oczywiście niepoważna argumentacja, nie mająca nic wspólnego z nauką.

Prezentowaną pozycję należy oczywiście gorąco polecić miłośnikom
astronomii — pozwoli ona bowiem odnaleźć właściwy dystans do Ma-
jestatu Przyrody.

T. ZBIGNIEW DWORAK

KALENDARZYK ASTRONOMICZNY

Opracował G. SitarSKI

Październik 1979 r.

Słońce

W październiku wstępuje w znak Skorpiona (Niedźwiedka); jego dłu-
gość ekliptyczna wynosi wówczas 210°. Dni ciągle są coraz krótsze
(w ciągu miesiąca dnia ubywa o 2 godziny), co widać po momentach
wschodu i zachodu Słońca w Warszawie: 1 października Słońce wscho-
dzi o 5h35m, zachodzi o 17h15m, a 31 października wsch. o 6h28m, zach.
o 16h11m.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>X 1</td>
<td>+26°00</td>
<td>+6°70</td>
<td>71°40</td>
<td>X 17</td>
<td>+26°16</td>
<td>+5°70</td>
<td>220°32</td>
</tr>
<tr>
<td>3 3</td>
<td>+26.12</td>
<td>+6.60</td>
<td>45.01</td>
<td>19 19</td>
<td>+26.05</td>
<td>+5.54</td>
<td>193.94</td>
</tr>
<tr>
<td>5 5</td>
<td>+26.22</td>
<td>+6.50</td>
<td>18.62</td>
<td>21 21</td>
<td>+25.90</td>
<td>+5.38</td>
<td>167.56</td>
</tr>
<tr>
<td>7 7</td>
<td>+26.28</td>
<td>+6.39</td>
<td>352.23</td>
<td>23 23</td>
<td>+25.72</td>
<td>+5.20</td>
<td>141.13</td>
</tr>
<tr>
<td>9 9</td>
<td>+26.32</td>
<td>+6.27</td>
<td>325.84</td>
<td>25 25</td>
<td>+25.52</td>
<td>+5.02</td>
<td>114.80</td>
</tr>
<tr>
<td>11 11</td>
<td>+26.32</td>
<td>+6.14</td>
<td>299.46</td>
<td>27 27</td>
<td>+25.28</td>
<td>+4.84</td>
<td>88.42</td>
</tr>
<tr>
<td>13 13</td>
<td>+26.30</td>
<td>+6.00</td>
<td>273.08</td>
<td>29 29</td>
<td>+25.01</td>
<td>+4.66</td>
<td>62.06</td>
</tr>
<tr>
<td>15 15</td>
<td>+26.24</td>
<td>+5.86</td>
<td>246.70</td>
<td>31 31</td>
<td>+24.71</td>
<td>+4.46</td>
<td>35.68</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka
tarczy;
B₀, L₀ — heliograficzna szerokość i długość środka tarczy.
6d22h50m — heliograficzna długość środka tarczy wynosi 0°.
Księżyc

W pierwszej połowie miesiąca Księżyc świecący jasno wysoko na niebie będzie przeszkadzał w obserwacjach, kolejność faz Księżycza jest bowiem w październiku następująca: pełnia 5d21h, ostatnia kwadra 12d22h, nów 21d31h i pierwsza kwadra 28d14h. Najdalej od Ziemi Księżyc znajdzie się 16, a najbliżej Ziemi 4 października. W październiku tarcza Księżyca zakryje Aldebarana, najjaśniejszą gwiazdę w gwiazdodobiorze Byka, oraz Saturna; zjawiska te będą jednak w Polsce niewidoczne.

Planety i planetoidy

Jasne planety widoczne są w drugiej połowie nocy: około północy wschodzi Mars, dwie godziny później Jowisz, a nad ranem Saturn. Mars około +1.3 wielkości wędruje w gwiazdodobiorze Raka w kierunku gwiazdodobioru Lwa. Jaso błyszczący Jowisz —1.5 wielkości przebywa w gwiazdodobiorze Lwa, a Saturn +1.3 wielkości na granicy gwiazdodobiorów Panny i Lwa. Przez lunety możemy już obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyców Jowisza.

Przez większe lunety możemy też obserwować trzy najjaśniejsze planetoidy: Ceres ok. 7.8 wielk. gwiazd. przez całą noc w gwiazdodobiorze Wieloryba, Pallas ok. 10 wielk. gwiazd. wieczorem w gwiazdodobiorze Lwa, a Westa ok. 7 wielk. gwiazd. na granicy gwiazdodobiorów Panny i Lwa. Przez lunety możemy już obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyców Jowisza.

Przez większe lunety możemy też obserwować trzy najjaśniejsze planetoidy: Ceres ok. 7.8 wielk. gwiazd. przez całą noc w gwiazdodobiorze Wieloryba, Pallas ok. 10 wielk. gwiazd. wieczorem w gwiazdodobiorze Lwa, a Westa ok. 7 wielk. gwiazd. na granicy gwiazdodobiorów Panny i Lwa. Przez lunety możemy już obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyców Jowisza.

<table>
<thead>
<tr>
<th>Data 1978</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Westa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rekt.</td>
<td>dekl.</td>
<td>rekt.</td>
</tr>
<tr>
<td>X 1</td>
<td>1h11m8</td>
<td>—8°34'</td>
<td>20h45m6</td>
</tr>
<tr>
<td>11</td>
<td>1 03.3</td>
<td>—9 15</td>
<td>20 45.9</td>
</tr>
<tr>
<td>21</td>
<td>0 45.9</td>
<td>—9 41</td>
<td>20 48.1</td>
</tr>
<tr>
<td>31</td>
<td>0 47.4</td>
<td>—9 49</td>
<td>20 52.3</td>
</tr>
</tbody>
</table>

Meteory

Od 16 do 26 października promieniują meteory z roju Orionidów. Radiant meteórow leży na granicy gwiazdodobiorów Oriona i Bliźniąt i ma współrzędne: rekt. 6d24m, dekl. +15°. Warunki obserwacji są w tym roku dobre.
4/5d Na tle tarczy Jowisza przechodzi księżyc 1 i jego cień. Obserwujemy koniec przejścia: cienia o 3h16m, księżyca 1 o 4h4m.
5d Wenus w złączeniu z Kłosem Panny (w odl. 3°).
5/6d Księżyc 2 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy koniec przejścia: cienia o 4h11m, księżyca 2 o 5h49m.
6d Planetoida Ceres w przeciwcstawieniu ze Słońcem.
9/21h Bliskie złączenie Księżyca z Aldebaranem; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w północno-wschodniej Afryce oraz w południowej i wschodniej Azji.
9/10d do 5h29m księżyc 3 Jowisza przechodzi na tle tarczy planety i jest niewidoczny.
11/12d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza. Cień pojawia się na tarczy planety już o 2h51m, a sam księżyca 1 rozpocznie przejście o 3h45m. Koniec przejścia cienia o 5h9m, a księżyca o 6h3m.
11/12d Obserwujemy początek przejścia cienia 2 księżyca Jowisza (o 3h55m) i samego księżyca (o 5h43m) na tle tarczy planety.
12/13h Złączenie Plutona ze Słońcem.
14/1h Złączenie Marsa z Księżykiem w odl. 4°.
16/1h Wenus w złączeniu z Księżycem w odl. 1°.
18/8h Bliskie złączenie Saturna z Księżycem; zakrycie planety przez tarczę Księżyca widoczne będzie w Południowej Afryce, na Oceanie Indyjskim i na Antarktydzie.
21/22d Księżyc 2 Jowisza ukryty jest za tarczą planety i niewidoczny aż do 6h24m.
22d O 1h złączenie Merkurego z Uranem w odl. 3°. Dalej Księżyk znajdzie się w złączeniu kolejno z trzema planetami: 9h z Wenus i 21h z Uranem w odl. 5°, a o 23h z Merkuryim w odl. 8°.
24/1h Słońce wstępuje w znak Skorpiona (Niedźwiadka).
25/4h Złączenie Neptuna z Księżykiem w odl. 4°.
26/27d O 3h48m obserwujemy początek zaćmienia 1 księżyca Jowisza.
27/1h Wenus w złączeniu z Uranem w odl. 0°2.
27/1d Księżyc 3 Jowisza ukryty jest za tarczą planety, a na tle tarczy przechodzi książęc1 wraz ze swym cieniem. O 3h25m nastąpi koniec przejścia cienia 1 księżyca, a o 4h29m samego księżyca 1. O 4h13m obserwujemy koniec zakrycia księżyca 3 (ukaże się on spoza prawego brzegu tarczy planety, patrząc przez lunetę odwracającą).
28/29d O 4h obserwujemy początek zaćmienia 2 księżyca Jowisza.
29/17h Merkury w największym wschodnim odchyleniu od Słońca (24°); położony jest jednak tak względem Słońca i Ziemi, że jest praktycznie niewidoczny.
30/11d Księżyc 2 Jowisza przechodzi na tle tarczy planety i jest niewidoczny. Koniec przejścia obserwujemy o 3h19m.

Minima Algola (beta Perseusza): październik 1d4h25m, 4d1h10m, 6d22h0m, 9d18h50m, 21d6h5m, 24d2h55m, 26d23h40m i 29d20h30m.

Momenty wszystkich zjawisk podane są w czasie środkowo-euro-opejskim.
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.

S. R. Brzostkiewicz — A "photoreportage" from Jupiter.

M. Szczepański — The XXIInd Astronomical Olympiad.

Observations.

Historical chronicle: 300 Years of ,,Connaissance des Temps'' — Johann Daniel Titius (1729—1796).

New books.

Astronomical calendar.

OGŁOSZENIE

Kupię optykę systemu Cassegraina, Ø 250 mm

Włodzimierz Rek
ul. Staromiejska 9
26-300 Opoczno
tel. 26-82

Indeks 38001

Drukarnia Związkowa w Krakowie - 2979/79 - 1-3 - 3.300 - E
Indeks 38001
Sześćdziesiąt lat temu,

w dniu 5 października 1919 roku kilkunastoosobowa grupa młodzieży za aprobatą władz szkolnych założyła stowarzyszenie o nazwie Koło Miłośników Astronomii.

Działalność swą rozpoczęto od organizowania zebran o charakterze seminaryjnym i wydawania czasopisma "Urania". Ze względów formalnoprawnych za datę powstania Towarzystwa uważa się 26 listopada 1921 r., datę pierwszego walnego zebrania członków. Stowarzyszenie, które do końca 1922 r. liczyło 160 osób z terenu całej Polski, przyjęło nazwę Towarzystwo Miłośników Astronomii.

Poradnik obserwatora.
Kronika historyczna: 250 lat obiektywu achronmatycznego.
Kalendarzyk astronomiczny.
Zakrycia gwiazd przez Księżyc.

Pierwsza strona okładki: Mozaika złożona z dziewięciu zdjęć powierzchni Jowisza wykonanych przez sondę kosmiczną Voyager 1 z odległości 7,8 mln km, ukazująca największą planetę Układu Słonecznego.

Druga strona okładki: U góry — zdjęcie wybuchu wulkanu na powierzchni satelity Jowisza Io wykonane przez sondę kosmiczną Voyager 1. Jest to pierwsza obserwacja pozaziemskiej działalności wulkanicznej we Wszechświcie. U dolu — obraz powierzchni satelity Jowisza Callisto złożony ze zdjęć wykonanych przez sondę kosmiczną Voyager 1 z odległości 292 tys. km. Jasny krater uderzeniowy w lewym górnym rogu ma średnicę około 600 km.

Trzecia strona okładki: Zdjęcia powierzchni największego satelity Jowisza Ganymedesa wykonane przez sondę kosmiczną Voyager 1: górne z odległości 246 tys. km, a dolne z odległości 145 tys. km. Liniowe twory stanowią prawdopodobnie różne dekoracje lodowej powierzchni.

Czwarta strona okładki: Zdjęcie satelity Jowisza Io wykonane przez sondę kosmiczną Voyager 1 z odległości około 800 tys. km.
MICHAŁ HELLER — Tarnów

EWOLUCJA KOSMOSU I KOSMOLOGII

XIII. Hipoteza pierwotnego atomu

1. Początkowa osobliwość

Z kosmologicznymi poglądami Georgesa Lemaître’a spotykaliśmy się już w rozdziałach VI, VIII i IX, jednakże wkład tego uczonego do rozwoju współczesnej kosmologii jest tak duży, że nie można na tym poprzestać.

W modelach Friedmana „gwałtowny początek” pojawia się jako tzw. początkowa osobliwość. Gdy kosmiczna ewolucja — cofając się wstecz — zbliża się do początkowej osobliwości, objętość Wszechświata zmierza do zera, a jego gęstość do nieskończoności. Nic dziwnego, że fizykom i astronomom osobliwość wydawała się „obcym zjawiskiem” w kosmologii. Panowało podówczas przekonanie czy raczej wierzenie, że osobliwość nie wynika z istoty teorii grawitacji, lecz jest tylko niejako ubocznym produktem rachunków przeprowadzanych w oparciu o nazbyt uproszczone założenia. Sam Einstein podsunął Lemaître’owi pomysł sprawdzenia, czy początkowa osobliwość pojawia się w prostym modelu kosmologicznym, w którym nie przyjmuje się założenia izotropowości przestrzeni (równouprawnienia wszystkich kierunków). Lemaître bez większych trudności przeprowadził potrzebne rachunki i udowodnił, że rozważany model anizotropowy również posiada osobliwość [1]. „Powyższe rozważania — pisał Lemaître komentując swój wynik — nie stanowią formalnego dowodu, że nie da się uniknąć zerowej objętości przez wprowadzenie anizotropii, ponieważ model ten nie jest najogólniejszym z możliwych; wskazują one — na przykładzie jednak dość ogólnego przypadku — że
anizotropia działa raczej w przeciwnym kierunku” [1, s. 84]. Jest to bardzo wnikliwa uwaga. Dlaczego? Około 30 lat później Penrose, Hawking i inni (por. [2]) udowodnili szereg twierdzeń wykazujących, że osobliwości są głęboko zakorzenione w matematycznej strukturze ogólnej teorii względności i nie da się ich uniknąć żadnymi prostymi zabiegami w rodzaju wprowadzania anizotropii. W dowodach tych twierdzeń kluczową rolę odgrywa pewna nierówność, zwana dziś warunkiem energetycznym, która... występuje także w rachunkach Lemaître’a. Uwaga Lemaître’a zamieniła się w ścisłe twierdzenia.

Praca nad modelem zasugerowanym przez Einsteina utwierdziła Lemaître’a w przekonaniu o nieuniknienności „gwałtownego początku”. Skoro osobliwości nie da się usunąć, należy ją wcielić do „fizyki Kosmosu”. W ten sposób początkowa osobliwość stała się — jak mawiał Lemaître — „geometriczną podporą” hipotezy pierwotnego atomu. Większą część swojego naukowego życia Lemaître poświęcił opracowywaniu zaproponowanej przez siebie teorii kosmologicznej. Wprawdzie istota jego koncepcji — ewolucja wszystkich struktur kosmicznych z produktów rozpadu pierwotnego atomu — pozostawała ta sama, jednakże szczegóły ulegały nieustannym poprawkom i ulepszeniom: Prześledzenie rozwoju idei Lemaître’a wymagałoby obszernego studium monograficznego, dlatego też ograniczamy się do przedstawienia — z konieczności skróconego — najbardziej dojrzałej wersji jego poglądów.

2. Wielki Wybuch

Pomysł po raz pierwszy wyrażony w krótkiej notce w „Nature” ([3], por. rozdz. VIII) wkrótce rozwinął się w pełną hipotezę. Jej celem było przede wszystkim sformułowanie „warunku początkowego, z którego aktualny Wszechświat mógł się rozwijać na mocy znanych praw fizycznych i mechanicznych” [4]. Istotą hipotezy Lemaître’a było przypuszczenie, że „Wszechświat mógł się zacząć od stanu, w którym całkowita energia była skoncentrowana w jednym kwancie, w jednym pakiecie energii, którego nie można sobie wyobrazić inaczej, jak tylko w postaci jądra atomowego” (ibid.). Lemaître oczekiwał, że dalszy rozwój fizyki jądrowej przyczyni się do zrozumienia natury pierwotnego atomu, czy raczej pierwotnego jądra atomowego, sądził jednak, iż tymczasem wystarczy „atom pierwotny traktować jako układ realizujący maksimum koncentracji przy minimalnym entropii” (ibid).
Pierwotny atom należy „umiejscowić” w początkowej osobliwości, ale „bez wątpienia nie można mu przypisywać promienia równego dokładnie zeru, lecz promień równy jakieś kilka minut światła, czyli, mówiąc astronomicznie, promień zaniedbywalnie mały w porównaniu do aktualnych rozmiarów Wszechświata” (ibid).

Ewolucja Kosmosu to dzieje rozpadu pierwotnego atomu, Lemaître pisał: „Tendencja materii do fragmentaryzacji to nic innego jak tylko niestabilność radioaktywna pierwotnego atomu; z kolei rozpadały się fragmenty — same również radioaktywne — tworząc kolejne pokolenia ciał radioaktywnych. Podział ten zatrzymuje się dopiero na pierwiastkach stabilnych lub na pierwiastkach o długim średnim czasie życia, takich jak na przykład uran” (ibid). Doniosłość pomysłu Lemaître’a polega na tym, że jest on w swej istocie pierwszą w dziejach kosmologii hipotezą pochodzenia pierwiastków chemicznych, z czasem hipoteza ta rozwinięcie się w nowy dział współczesnej kosmologii, w teorię kosmicznej nukleosyntezy.

Rozpad pierwotnego atomu był zjawiskiem gwałtownym, eksplozją na miarę kosmiczną w dosłownym tego słowa znaczeniu. Śmiała koncepcja Lemaître’a budziła początkowo opory kosmologów. W kuluarach międzynarodowych spotkań i konferencji ironicznie mówiło się o „Wielkim Wybuchu” co w oryginalnej, angielskiej wersji („Big Bang”) może znaczyć zarówno huk powstający w momencie eksplozji, jak i wielki hałas, domyślnie: wokół hipotezy Lemaître’a. Dziś określenie „Wielki Wybuch” weszło do technicznego żargonu kosmologów i nikt już nie pamięta, że zrodziło się ono z ironii.

3. Kosmologia kwantowa

Lemaître od samego początku był świadom wielkiego znaczenia fizyki kwantowej dla rozwoju kosmologii. Wprawdzie obecnie świat jako całość jest układem makroskopowym (w sensie: układem nie-kwantowym), ale pierwotny atom zachowywał się kwantowo. A zatem ewolucja Wszechświata w pobliżu „początku” nie mogła być deterministyczna. Na Kongresie Solvayowskim w Brukseli, w 1958 r. Lemaître mówił: „Zasada nieoznaczności otwiera nowe możliwości przed kosmologią. Każdy układ fizyczny, a więc i Wszechświat, jest opisywany przez zbiór możliwych «stanów», które mogą zostać, ale mogą też nie zostać urzeczywistnione. ...Z tego samego początku mogły wyewoluować drastycznie różne wszechświaty. Aktual-
ny bieg zdarzeń coraz bardziej konkretyzował się, w miarę jak materia dzieliła się na coraz większą liczbę pakietów, w pewien, nie dający się przewidzieć sposób. Oczywiście, gdy liczba pojedynczych pakietów stała się bardzo wielka, istotna nieoznaczoność stała się nieefektywna i została zastąpiona przez praktyczny determinizm charakterystyczny dla zjawisk makroskopowych, wywodzący się z prawa wielkich liczb nieprzewidywalnych zjawisk". [5]

Taki obraz ewolucji jest filozoficznie atrakcyjny: cofając się wstecz w czasie, determinizm przechodzi w indeterminizm i to indeterminizm coraz „mocniejszy” w miarę jak zbliżamy się do „początku”. „Rozważania te wskazują … na coś, co można by nazwać niesiągalnym początkiem (inaccessible beginning). Mom na myśli początek, który nie może być osiągnięty nawet przez myśl; początek, do którego można się zbliżyć jedynie w jakiś asymptotyczny sposób” (ibid).

Pierwotny atom był prosty, złożoność wzrastała stopniowo przez dzielenie się energii na coraz większą liczbę kwantów. „Początek złożoności oznacza początek tych pojęć, które zakładają wielką liczbę indywidualów. Takimi pojęciami są przestrzeń i czas” (ibid.). Początek i jego najbliższe „otoczenie” były — według Lemaître’a — aprzestrzenne i bezczasowe; czas i przestrzeń wyłoniły się z biegu zdarzeń dopiero wtedy, gdy same zdarzenia stały się odpowiednio liczne, tak że zaczęła już działać statystyka i prawo wielkich liczb.

4. Promieniowanie resztkowe

Kwantowe rozważania Lemaître’a o pierwszych fazach ewolucji świata nie są jeszcze pełną, fizyczną hipotezą; stanowią one raczej pewien program dla przyszłej teorii, która by właściwie opisywała stany Wszechświata odpowiednio bliskie „początku”. Pierwszy problem, z którym współczesna fizyka jest już w stanie uporać się, dotyczy pytania, czy cząstki będące produktami rozpadu pierwotnego atomu, mogą być traktowane jako gaz, czy nie? Oto odpowiedź Lemaître’a: „Najpierw należy jasno określić, co należy uważać za istotną charakterystykę gazu. Nie wystarczy mieć tylko zbiór wielkiej ilości cząstek. Ażeby taki zbiór mógł być nazwany gazem, cząstki tego zbioru muszą posiadać prędkości niewiele różniące się od pewnej średniej prędkości, prędkości gazu, a rozkład prędkości wokół tej średniej powinien być niezbyt różny od rozkładu Maxwella,
typowego dla zwykłych gazów. Z drugiej zaś strony, zwykły zbiór cząstek poruszających się we wszystkich kierunkach z prędkościami tego samego rzędu, nie może być uważany za gaz. Należy go opisywać jako zbiór korpuskularnych promieni, jako korpuskularne promieniowanie". [6]

Według Lemaitre’a pierwsze pokolenia produktów rozpadu pierwotnego atomu nie tworzyły gazu lecz „korpuskularne promieniowanie”. Dopiero z czasem, na skutek częstych zderzeń, promieniowanie osiągnęło stan równowagi i stało się gazem. Należy tu odnotować wielki sukces fizycznej intuicji Lemaitre’a: dzisiejsze dane zarówno teoretyczne, jak i obserwacyjne świadczą o tym, że materia wypełniająca młody Wszechświat istotnie miała własności promieniowania; współczesny, tzw. standardowy model kosmologiczny przyjmuje, że we wczesnych erach ewolucji świat rzeczywiście był wypełniony promieniowaniem.

Jedna trafna intuicja pociąga za sobą następne. Myśl Lemaitre’a podążała według następującego schematu: po pierwsze, w jaki sposób pierwotne promieniowanie stało się gazem? po drugie, w jaki sposób z tego gazu uformowały się galaktyki i gromady galaktyk? po trzecie, co stało się z tą częścią pierwotnego promieniowania, która nie przeszła w stan gazu?

Ostatnie pytanie jest niezmiernie doniosłe. Lemaitre uważał, że takie „resztkowe promieniowanie” istnieje do dziś i mylnie utożaszał je z promieniowaniem kosmicznym. Ale samo przekonanie o istnieniu promieniowania resztkowego okazało się słuszne. Wkrótce potem jego istnienie, z większą precyzją teoretyczną, przewidział Gamow, a eksperymentalnie zostało ono odkryte dopiero na początku lat sześćdziesiątych, na krótko przed śmiercią Lemaitre’a. Odkrycie tego promieniowania — zwanego także promieniowaniem tła — zapoczątkowało nowy okres w rozwoju kosmologii, dostarczając jej nowych podstaw obserwacyjnych (opowiadamy o tym w następnych rozdziałach). W latach trzydziestych jedynym znanym kandydatem do odegrania roli „promieniowania resztkowego” było promieniowanie kosmiczne. Nie można Lemaitre’a winić za tę swojego rodzaju „genialną pomyłkę”. Zresztą sam Lemaitre podkreślał, że promieniowanie kosmiczne może stanowić tylko część „promieniowania resztkowego” (por. [6]).

Idea „promieniowania resztkowego” pojawiła się w rozważaniach Lemaitre’a bardzo wcześnie; została ona już wyraźnie zapowiedziana w wystąpieniu podczas dyskusji na posiedzeniu Towarzystwa Brytyjskiego w 1931 r. (por. rozdz. IX), przed-
stawiona m. in. na seansie publicznym Belgijskiej Królewskiej Akademii Nauk w 1934 r. [7], a potem wielokrotnie opracowywana i powtarzana we wszystkich ważniejszych pismach kosmologicznych Lemaître’a.

Lemaître jasno zdawał sobie sprawę z ogromnego znaczenia, jakie może mieć dla kosmologii obserwacyjne badanie promieniowania resztkowego, dlatego dużą część swoich naukowych wysiłków poświęcił badaniu promieni kosmicznych i szybko stał się w tej dziedzinie uznanym autorytetem. Do­dajmy wreszcie, że do dziś pochodzenie całego promieniowania kosmicznego nie zostało ostatecznie wyjaśnione; nie można a priori wykluczyć, że pewna część tego promieniowania ma znaczenie kosmologiczne.

5. Ewolucja świata według Lemaître’a

Drugie pytanie Lemaître’a: w jaki sposób z gazu, mniej więcej równomiernie rozpostartego w przestrzeni, powstały galaktyki i gromady galaktyk? także doprowadziło do nowatorskich roz­ważań. Narzucającym się mechanizmem jest tu tzw. niestabil­ność grawitacyjna: jakiekolwiek przypadkowe zagęśczenie ga­zu będzie przyciągać znajdujące się w pobliżu cząstki i wzra­stając w ten sposób może dać początek proto-galaktyce lub proto-gromadzie galaktyk. Trudność polega na tym, że Wszech­świat się rozszerza i po uwzględnieniu tego faktu okazuje się, że zagęszczenia będą wykazywać tendencję do zanikania a nie do powiększania się. Chcąc tę trudność przewyciężyć, trzeba w jakiś sposób „przyhamować” kosmiczną ekspansję.

Lemaître znalazł wyjście z tej sytuacji. Model z „logaryt­micznym początkiem” propagowany przez Lemaître’a w 1927 roku był rozwiązaniem równań pola ze stałą kosmologiczną. Wartość tej stałej była identyczna jak dla statycznego mo­delu Einsteina, oznaczmy ją przez \(\Lambda_F \). Lemaître zauważył, że jeśli wybrać wartość stałej kosmologicznej nieznacznie większej od \(\Lambda_F \), to otrzymuje się ewolucję świata taką jak przedstawio­no na rysunku. Model ten nazwano potem modelem lub świa­
tem Lemaître'a. Ewolucja modelu Lemaître’a wyraźnie prze­
chodzi przez trzy fazy: 1) okres gwałtownej ekspansji począ­
wszy od osobliwości; 2) zwolnienie ekspansji do stanu prawie-
statycznego (promień Wszechświata jest wówczas równy \(R_E \),
promieniowi statycznego świata Einsteina); 3) ponowne przy­
spieszenie rozszerzania.

Ważną cechą rozwiązania Lemaître’a jest to, że jeśli war­
tość stałej kosmologicznej wybieramy coraz mniej różną od
\(\Lambda_E \), to środkowa, prawie-statyczna faza ewolucji ulega coraz
większemu wydłużeniu; a zatem manipulując wartością stałej
kosmologicznej możemy dowolnie wydłużać wiek Wszechświ­
ata. Gdyby galaktyki uciekały od siebie zawsze z jednakową
prędkością (liniowa ekspansja), wiek Wszechświata — jak to
wskazano na rysunku — byłby równy \(4 \times 10^9 \) lat, ale naprawdę
rozszerzanie było kiedyś zahamowane prawie do zera i dzięki
temu wiek Wszechświata jest znacznie dłuższy. W ten sposób
Lemaître likwidował paradoks wieku Wszechświata.

Także i zagadnienie powstawania galaktyk znajduje stosun­
kowo łatwe rozwiązanie w modelu Lemaître’a. W środkowej,
prawie-statycznej fazie ewolucji ekspansja jest zwolniona praktycznie do zera, co stwarza pierwotnym zagęszczeniom materii duże szanse przeżycia. Lemaître intensywnie badał niestabilność grawitacyjną w drugiej fazie ewolucji swojego modelu i stworzył fizycznie dość rozbudowaną teorię powstawania galaktyk. Lemaître'a należy więc uznać za jednego z prekursorów teorii grawitacyjnej niestabilności, która potem doczekała się dokładnego matematycznego opracowania. W fizycznej stronie swojej koncepcji powstawania galaktyk Lemaître przeoczył jeden ważny czynnik, a mianowicie ciśnienie wywierane przez promieniowanie (por. [8]); przeoczenie to sprawia, że teoria Lemaître’a ma dziś tylko znaczenie historyczne. Nadmieniamy także, że lemaîtreowski model powstawania galaktyk może być stosunkowo łatwo obalony przez obserwacje. Według Lemaître’a galaktyki mogą powstawać tylko w środkowym, prawie-statycznym okresie ewolucji; gdyby procesy galaktykotwórcze zaobserwowano w trzeciej, współczesnej fazie ewolucji, oznaczałyby to fałszywość całej koncepcji.

Lemaître dążył do opracowania całościowej wizji kosmicznej ewolucji. Interesował się nie tylko zagadnieniem pochodzenia galaktyk, lecz także ich statystycznym rozkładem na sferze niebieskiej, próbując wyjaśnić zjawisko gromadzenia się galaktyk przy pomocy modelu, który sam nazywał „mechanicznym modelem gromad” (por. np. [5], [9]).

Dzielo Lemaître’a uderza śmiałością koncepcji i kompletnością opracowania. Uczony z Louvain zaproponował obraz ewolucji kosmicznej, poczynając od pierwotnego atomu, poprzez proces jego rozpadu i nukleosyntezy, powstawanie galaktyk i ich gromad aż do obserwowanego obecnie rozkładu materii w przestrzeni. Pod względem zupełności model Lemaître’a można porównać jedynie z dzisiejszym tzw. standardowym modelem Wszechświata.

Trójfazowy model Lemaître’a przeszedł dziwne koleje. Początkowo wydawało się, że rozwiązuje on wszystkie zasadnicze problemy kosmologii. W latach przed drugą wojną światową i bezpośrednio po niej był to niewątpliwie najlepiej opracowany model kosmologiczny. Potem przyszła tzw. kosmologia stacjonarnego i Gamowa teoria nukleosyntezy kosmicznej, które odwróciły uwagę od prac Lemaître’a. Napiwające dane obserwacyjne zaczęły wskazywać, że wartość stałej kosmologicznej jest albo równa zeru, albo bardzo mało różni się od zera. Z czasem powstały teorie pochodzenia galaktyk bez konieczności przyjmowania prawie-statycznego okresu w ewolu-

6. Nieznany komentarz Lemaître’a

W archiwum Lemaître’a w Louvain-la-Neuve znajduje się maszynopis — 50 stron, z korektą naniesioną ręką Lemaître’a — zatytułowany „Rozszerzający się Wszechświat” [10]. Artykuł przedstawia syntetyczny zarys całej kosmologicznej koncepcji Lemaître’a. Jak wynika ze znalezionej w tym samym archiwum listu, artykuł był pisany na zamówienie Japońskiej Encyklopedii, ale — o ile udało się ustalić — nigdy nie ukazał się drukiem; najprawdopodobniej wybuch drugiej wojny światowej przeszkodził publikacji. Przeczytajmy uważnie kilka fragmentów z 17 rozdziału tej pracy, zatytułowanego „Początek przestrzeni”. Po rozważeniu wczesnych etapów ewolucji kosmicznej, Lemaître stawia pytanie:

„Co zdarzyło się przedtem?”

Możemy mówić o tym wydarzeniu jako o początku. Nie mówię o stworzeniu. Fizycznie jest to początek w tym sensie, że jeśli cokolwiek zdarzyło się przedtem, to to coś nie ma obserwowalnego wpływu na zachowanie się naszego Wszechświata, ponieważ każda właściwość materii przed początkiem została całkowicie zagubiona w ekstremalnej kontrakcji do teoretycznego zera. Jakiekolwiek uprzednie istnienie Wszechświata ma metafizyczny charakter. Fizycznie wszystko dzieje się tak, jak gdyby teoretyczne zero było rzeczywiście początkiem. Pytanie, czy był to rzeczywiście początek czyli stworzenie: coś zaczynającego się z nicości, jest pytaniem filozoficz-
nym i nie może być rozstrzygnięte przy pomocy fizycznych lub astronomicznych rozważań. (...)

Wydaje się, że czas można przedłużyć dowolnie w przeszłość i w przyszłość. Na pierwszy rzut oka wydaje się, że nie może być teraźniejszości, która by nie miała przyszłości i przeszłości. Ale czas nie istnieje bez przestrzeni i czasoprzestrzeń może mieć kres, ponieważ przestrzeń charakteryzuje się pewną skończoną wielkością, a mianowicie promieniem, którego wartością graniczną jest zero. A zatem może istnieć taka chwila czasu, że przeszłość i przyszłość tej chwili różnią się od siebie przez to, iż w przyszłości istnieje przestrzeń, a w przeszłości przestrzeń nie istnieje. Taka chwila jest naturalnym początkiem, jest konsekwencją teorii wyłożonej powyżej i w pewnej mierze potwierdzonej przez fakty empiryczne, wskazujące, iż naturalny początek miał miejsce kilka miliardów lat temu.

Byłoby ciekawe rozważyć, jakby wyglądał wszechświat, istniejący przed naszym Wszechświatem, wszechświat, który byłby dokładnie podobny do naszego, ale w którym wszystko odbywałyby się w przeciwnym kierunku; byłby to wszechświat kurczący się, kolapsujący do zera, spalający się do małej kuli i dopiero potem odbudowujący się od nowa. Taki wszechświat miałby identyczne ogólne własności jak nasz, podobnie jak nasz, jednakże pewne jego istotne cechy byłyby odmienne.

Przede wszystkim zawierałby on około dziesięciokrotnie mniej uranu i toru a więcej ołowiu, w wyniku radioaktywnego rozpadu. Ale główna różnica polegałaby na tym, że nie istniałyby w nim promienie kosmiczne. Byłoby to pewną wskazówką, że nie jest on ukształtowany ze świeżej materii.

Istnieje piękny sposób otrzymania świata ukształtowanego ze świeżej materii. Muszę przyznać, że sposób ten jest wysoce hipotetyczny, ale myślę, że jest obowiązkiem teoretyka stawiać czoła biegowi swoich myśli nawet wówczas, gdy wiodą go one ku nie całkiem pewnym uogólnieniom znanych faktów. Mam na myśli hipotezę pierwotnego atomu”. [10]

Cechą wielkich umysłów jest krytycyzm, a więc odnoszenie się z pewnym dystansem także do własnych pomysłów. Jeśli ideę pierwotnego atomu traktować dosłownie, jest ona fałszywa (z punktu widzenia naszej dzisiejszej wiedzy), ale jeśli spojrzeć na nią jako na hipotezę, usytuowaną na konkretnym etapie rozwoju kosmologii, to niewątpliwie jest ona ogniwem w łańcuchu postępu. Należy wszakże odróżnić „szczegóły techniczne” od pewnych ogólnych idei, które je zrodziły. O aktual-
ności „ogólnych idei” Lemaître’a świadczy fakt, że prawie wszystkie myśli wyrażone w powyższej przytoczonym fragmencie można by zastosować do obowiązującego dziś standardowego modelu Wszechświata. Szczegóły techniczne starzeją się szybciej niż ogólne idee.

Przypisy

[8] V. Petrosian, Confrontation of Lemaître Models and the Cosmological Constant with Observations, w: Confrontation of Cosmological Theories with Observational Data, Sympozjum Międzynar. Uni Astron. w Krakowie (wyd. przez M. S. Longaira) Reidel, 1974, s. 31—46.

KRZYSZTOF ZIOŁKOWSKI — Warszawa

ŚWIADKOWIE NARODZIN UKŁADU SŁONECZNEGO

Cztery i pół miliarda lat temu, w posiadającym kształt dysku gazowo-pyłowym obłoku powstającego właśnie Słońca, toczyła się dziwna walka między obficie tworzącymi się weź zgęszczeniami materii. Większe przechwytywały mniejsze; liczne zderzenia rozdrabniały już utworzone, a pozostałości rozpadów były bądź wyrzucane na zewnątrz, bądź też trafiały w Słońce; częste kolizje — w zależności od prędkości spotkania i wielkości jego uczestników — powodowały „zlepianie się” materii w coraz bardziej masywne bryły albo na drodze powolnego
procesu ewolucyjnego, albo w gwałtownych spadkach jednych ciał na drugie. Po upływie kilku milionów lat na placu boju zostały już tylko nieliczne, ale za to stosunkowo duże, kuliste kondensacje materii okrążające Słońce po stabilnych, prawie kołowych orbitach; dały one początk kompleks planetom. Pozaśista mat­
eria pierwotnej mgławicy uległa niemal zupełnemu rozprosze­
niu, a jedynie w stosunkowo wąskim pasie między orbitami Marsa i Jowisza do dziś kroczą wokół Słońca wiele tysięcy świadków tamtych wydarzeń; ze względu na niewielkie roz­
miary zyskały one nazwę małych planet, planetoid lub asteroid. Planetek nie da się zaobserwować na niebie gołym okiem, nic więc dziwnego, że o ich istnieniu dowiedziano się dopiero w poprzednim stuleciu. Pierwszą i największą asteroidę Ceres odkrył 1 stycznia 1801 roku sycylijski astronom G. Piazzzi,
trzy dalsze zaobserwowano w ciągu kilku następnych lat, zaś masowo zaczęto je odkrywać w drugiej połowie XIX wieku. Obecnie znanych jest już kilka tysięcy tych ciał niebieskich. Ogromna większość planetoid porusza się wokół Słońca — po­
dobnie jak planety — po prawie kołowych orbitach leżących niemal w jednej płaszczyźnie pokrywającej się z płaszczyzną ruchu wielkich planet; średnia odległość asteroid od Słońca przewyższa blisko trzykrotnie odległość Ziemi od Słońca, a ich okres obiegu wynosi średnio 4,5 lat.

Ale niewielki procent małych planet odbiega od tych pra­
widłości. Przykładem mogą być tzw. trojańczycy — plane­
toidy, których nazwy pochodzą od imion bohaterów wojny trojańskiej. Krążą one po torach, które niemal całkowicie po­
krwają się z orbitą Jowisza, przy czym ich odległości od Jo­
wisza są zawsze równe mniej więcej odległości Jowisza od Słońca, czyli innymi słowy — Słońce, Jowisz i trojańczycy stale znajdują się w wierzchołkach trójkąta równobocznego. O trojańczykach mówimy, że poruszają się w rezonansie 1 : 1 z Jowiszem. Natomiast intrugującym zjawiskiem jest fakt bra­
ku planetoid, które poruszałyby się w rezonansie 1 : 2 z Jowi­
szem, tzn. takich, których okresy obiegu wokół Słońca byłyby równe połowie okresu obiegu Jowisza. W całym pierścieniu planetoid jest to wyraźnie obserwowana luka, która nosi nazwę przerwy Hecuby. O ile istnienie trojańczyków jest przyrodnio­
czym potwierdzeniem przewidywanego teoretycznie faktu, to do tej pory nie udało się dostatecznie wiarygodnie uzasadnić występowania przerwy Hecuby. Również przy innych rezonan­
sach z ruchem Jowisza obserwuje się bądź to zgrupowania bądź też luki w pierścieniu planetoid (tzw. okna Kirkwooda).
Istnieją ponadto pojedyncze planetoidy poruszające się po zupełnie nietypowych dla tych ciał niebieskich orbitach. Wy- mienieńmy dla przykładu dwie, które — wśród dotychczas znanych — charakteryzują się najmniejszym i największym okresem obiegu wokół Słońca. Planetoida Ra-Shalom odkryta we wrześniu 1978 roku obiega Słońce zaledwie w ciągu 277 dni przybliżając się do niego w perihelium na odległość 0,47 jednostki astronomicznej i oddalając się w aphelium nieco poza orbitę Ziemi na odległość 1,20 jednostki astronomicznej. Równie niedawno odkryta — w listopadzie 1977 roku — planetka Chejron ma okres obiegu równy 50,7 lat. Jej odległości perihelium i aphelium wynoszą odpowiednio 8,5 i 18,9 jednostki astronomicznej. Orbity obu tych planetoid są dość znacznie odbiegającymi od koła elipsami (mimośród Ra-Shalom wynosi 0,43, a Chejrona 0,38) i znajdują się całkowicie poza pierścień małych planet (Ra-Shalom wewnątrz, a Chejron na zewnątrz). Dodajmy, że Ra-Shalom należy do planetoid tzw. grupy Apollo, którym poświęcimy odrębny artykuł w następnym numerze Uranii.

Do niedawna te właśnie (oraz wiele innych tu nie wymienionych) osobliwości ruchów stanowiły główny przedmiot badań planetoid, dostarczając niejednokrotnie przyrodniczych potwierdzeń różnym teoretycznym rozwiązaniom mechaniki nieba. Ostatnie lata przesunęły jednak punkt ciężkości zainteresowań małymi planetami na zagadnienia fizyczne takie jak badania kształtów, rozmiarów i mas planetoid, zmian jasności, barwy i zdolności odbijającej ich powierzchni itp. Wydaje się, że przyczyną tego było przede wszystkim zrozumienie faktu, że badania struktury tych ciał niebieskich dostarczają informacji o narodzinach i początkowych stadiach ewolucji Układu Słonecznego.

Kilka lat temu odkryto np., że — wbrew pierwotnym przypuszczeniom — zdolność odbijania (albedo) promieniowania słonecznego od powierzchni planetoid nie jest jednakowa i może różnić się dla poszczególnych obiektów nawet o czynnik 10. Spośród około 200 dotychczas szczegółowo przebadanych asteroid najmniej promieniowania — zaledwie 0,02 — odbija Arethusa, a najwięcej — 0,38 — Nysa. Albedo czterech pierwszych planetoid wynosi: Ceres — 0,05, Pallas — 0,07, Juno — 0,15, Westa — 0,23.

Znajomość albedo planetoidy umożliwia znalezienie jej rozmiarów. Przyjmując bowiem, że asteroida promieniuje jedynie odbitym światłem słonecznym, pomiar jej jasności i obli-
czenie na podstawie znanej orbity odległości od Ziemi i Słońca przy danym albedo, stwarza możliwość obliczenia wielkości powierzchni odbijającej, a stąd średnicy planetoidy. Jedna z metod znajdowania albedo planetoid opiera się na znalezionej laboratoryjnie zależności stopnia polaryzacji światła odbitego od powierzchni o określonej zdolności odbijania od kąta fazowego (czyli kąta między kierunkami: źródło światła — obserwator i źródło światła — powierzchnia odbijająca; lub w przypadku planetoidy: Słońce — Ziemia i Słońce — planetoida). Znając tę zależność dla powierzchni o różnych zdolnościach odbijania, pomiar polaryzacji promieniowania planetoidy i obliczenie kąta fazowego w momencie pomiaru umożliwi znalezienie jej albedo. Inny sposób znajdowania albedo planetoid stał się możliwy dzięki znacznemu ostatnio zwiększeniu dokładności metod radiometrycznych pomiaru ilości promieniowania podczerwonego, za pomocą których można precyzyjnie mierzyć własne, termiczne promieniowanie małych planet. Zakładając, że wszystko promieniowanie, które nie zostało odbite od planetoidy, a zaabsorbowane przez jej powierzchnię zostało następnie wyemitowane jako promieniowanie termiczne, i że planetoida własnych źródeł ciepła nie posiada, z pomiaru ilości tego promieniowania i jasności planetoidy można obliczyć albedo jej powierzchni.

Średnice (w km) czterech pierwszych planetoid znajdowane różnymi metodami

<table>
<thead>
<tr>
<th>Metoda</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Juno</th>
<th>Westa</th>
</tr>
</thead>
<tbody>
<tr>
<td>bezpośredni pomiar mikrometryczny</td>
<td>767</td>
<td>489</td>
<td>193</td>
<td>386</td>
</tr>
<tr>
<td>metoda polarymetryczna</td>
<td>1050</td>
<td>635</td>
<td>225</td>
<td>515</td>
</tr>
<tr>
<td>metoda radiometryczna</td>
<td>1003</td>
<td>585</td>
<td>247</td>
<td>538</td>
</tr>
<tr>
<td>zakrycie gwiazdy</td>
<td>588</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Różne sposoby pomiaru albedo planetoid dają różne wartości ich średnic. W Tabeli 1 zebrano odpowiednie dane dla czterech pierwszych małych planet, dla których — jeszcze w końcu zeszłego stulecia — udało się mikrometrycznie zmierzyć średnice. Ciekawe, że współczesne metody polarymetryczne i radiometryczne dają wartości średnic większe od dawniej-szej metody mikrometrycznej. W przypadku planetoidy Pallas
niedawne zakrycie przez nią gwiazdy 11 wielkości gwiazdowej SAO 85009 w dniu 29 maj 1978 roku stało się okazją do pomiaru średnicy jeszcze inną metodą. Umożliwia ona stwierdzenie, że Pallas ma kształt elipsoidy trójosiowej, której promień biegunowy wynosi \(266 \pm 15\) km, a promienie równikowe są równe \(279 \pm 4\) km i \(263 \pm 6\) km. Informacje o kształtach innych planetoid pochodzą natomiast z analizy krzywych zmian ich jasności. Jasności znanych planetoid ulegają zmianom w granicach od 0,04 wielkości gwiazdowej dla Ceres aż do 1,5 wielkości gwiazdowej dla Erosa i nawet 2 wielkości gwiazdowych dla Geographosa. Analiza zmian w czasie jasności wskazuje, że np. Geographos przypomina swym kształtem wydłużony cylinder o długości \(4 \pm 0,5\) km i szerokości \(1,5 \pm 0,15\) km.

O masach planetoid wiemy niewiele. Według najnowszych ocen masa całego pierścienia małych planet wynosi \(3 \times 10^{21}\) kg co stanowi zaledwie 0,0005 masy Ziemi. Mniej więcej połowa tej wielkości przypada na trzy największe planetoidy Ceres, Pallas i Westę.

Do ciekawych wniosków doprowadziło spostrzeżenie, że widma planetoid ciemniejszych, czyli słabiej odbijających promieniowanie słoneczne, są wyraźnie różne od widm planetoid jaśniejszych, a więc o większej zdolności odbijania. Porównanie tych widm z uzyskanymi laboratoryjnie widmami promieniowania odbitego od meteorytów różnych typów pozwoliło stwierdzić podobieństwo planetoid o małym albedo do tzw. węglowych chondrytów, a planetoid o większym albedo do meteorytów kamiennych.

Ale jednym z najciekawszych odkryć ostatnich lat wydaje się znalezienie zależności budowy asteroid od ich odległości od Słońca. Okazuje się mianowicie, że bliżej Słońca krążą głównie jasne planetoidy kamienne, podczas gdy w bliższych orbity Jowisza zewnętrznych partiach pierścienia małych planet spotyka się przeważnie ciemne planetoidy węglowe. Odzwierciedla to prawdopodobnie przestrzenne zróżnicowanie obfitości poszczególnych pierwiastków w okresie powstawania Układu Słonecznego, a także wydaje się świadczyć o tym, że planetoidy znajdują się obecnie w tych samych mniej więcej odległościach od Słońca co w początkowej fazie jego ewolucji. Ugruntuje to także przedstawioną na początku hipotezę pochodzenia planetek podważając jednocześnie wiarygodność popularnej jeszcze do niedawna koncepcji powstania małych planet w wyniku rozpadu jednego lub kilku większych ciał krążących pierwotnie wokół Słońca między orbitami Marsa i Jowisza.
Warto może jeszcze na zakończenie uzmisłenić sobie, że świadectwem burzliwych wydarzeń u zarania dziejów układu planetarnego jest nie tylko oczywisty fakt istnienia pierścienia małych planet, ale także równie oczywisty, choć dopiero w ostatnich latach stwierdzony, fakt występowania charakterystycznych kraterów uderzeniowych na powierzchniach wszystkich planet i satelitów wewnętrznej części Układu Słonecznego (tzn. znajdujących się na zewnątrz orbity Jowisza), a także satelitów Jowisza, o czym przekonują nas zdjęcia na okładce niniejszego numeru Uranii. Należy więc spodziewać się podobnego wyglądu również i powierzchni planetek.

LUDWIK ZAJDLER — Warszawa

NA MARGINESIE SZEŚCJDZIESIĘCIOLECIA „URANII”

Największą chybą trudność w wydawaniu Uranii stanowiły brak środków finansowych. Składka członkowska nie wystarczała oczywiście na pokrycie kosztów papieru i druku. Członkowie Koła rozprowadzali gdzie się dało egzemplarze, głównie wśród kolegów (cena numeru wynosiła 4 marki), pewną sumę uzyskano z zadeklarowanej z góry przed-
płaty przez członków rodzin lub znajomych przychylnie usposobionych do akcji. I tak na przykład — jak relacjonuje Stanisław Mrozowski — jego babka wpisała swego nowonarodzonego wnuka na listę prenumeratorów dożywotnich... Ten brak środków własnych, tzn. że składek bądź prenumeraty, towarzyszy wydawnictwu po dzień dzisiejszy, a w każdym razie do chwili przejęcia wydawnictwa przez Zakład Narodowy im. Ossolińskich w 1977 roku. W okresie międzywojennym niekiedy udawało się uzyskiwać pewne fundusze od władz miasta Warszawy lub państwowych, nie wystarczały one jednak nigdy na wydawanie miesięcznika, nawet kwartalnika. Bywały lata kiedy ukazywały się tylko dwa zeszyty (w latach 1923 i 1924 tylko po jednym), a w roku 1935 nie wydano żadnego.

Tylko niezwykłemu entuzjazmowi młodych miłośników należy zawsze pamiętać, że w tych trudnych warunkach 1919 roku powstało wydawnictwo, które okazało się tak potrzebne, że utrzymuje się w niewiele zmienionym profilu przez lat sześćdziesiąt.

Przyczynili się do tego niewątpliwie i ci, którzy już przedtem stworzyli klimat sprzyjający zainteresowaniu się astronomią na ziemiach polskich. A więc i Kamil Flammarion, którego dzieła popularnonaukowe tłumaczone na język polski pobudziły lekarza z Jędrzejowa, dr Feliksa Przymkowskiego (dziad obecnego dyrektora Muzeum Przykowskich) do wystąpienia już na kilka lat przed wojskową wojnę światową w sprawie powołania Towarzystwa Astronomicznego. Do apelu przyłączyli się wspomniani już Maksymilian Białęcki i Felicjan Kępiński, a także ziemianin z Przegalin inż. Władysław Szaniawski, lekarz dr Tadeusz Rakowiecki i astronom Tadeusz Banachiewicz. Zapewne do zainteresowania się astronomią przyczyniła się „groźna” kometa Halleya z 1910 roku, a już na pewno ukazanie się w 1919 roku komety Brorsen-Metcalfa — o czym wspominają Merchentaler i Mrozowski.

Na temat historii powstania Towarzystwa i jego organu napisano już wiele. Szczególna wartość mają tu pierwsze, dziś już zaliczane do „białych kruków” zeszyty Uranii z lat 1922 i 1923. Zawierają one m. in. nazwiska członków sprzed 60 lat. Tute także w następnych latach panował ten dobry obyczaj, że w każdym numerze podawano personalia nowo-wstępujących członków.

Niezwykłe cenne są również relacje z tych czasów, zawarte we wspomnieniach pierwszych redaktorów Uranii — Jana Merchentalera („Pod znakiem komety”, Urania, listopad 1959 r., z okazji czterdziestolecia) i Stanisława Mrozowskiego („Jak powstało Towarzystwo Miłośników Astronomii”, Urania, luty 1973 r.). Zniewątną historię z tabelami zawierającymi liczne dane statystyczne, zawiera wydana w 1971 r. broszurka pt. „50 lat społeczno-milośniczego ruchu astronomicznego w Polsce”, której autorami są Tadeusz Grzesło i Jan Rolewicz. Cenną pozycję w zakresie historii Uranii stanowi artykuł „Czterdziestolecie czasopisma
Urania Stanisława Lubertowicza (maj 1962 r., w roku jubileuszowym ukazania się „legalnego” organu Towarzystwa Miłośników Astronomii); autor zadał sobie trud zinwentaryzowania wszystkich zeszytów i numerów Uranii od pierwszego w 1922 r. do ostatniego w 1961 r., łącznie to moment 32, zeszytów 205, numerów 250 (niewiele zeszity łączyły parę numerów).

Na zakończenie omawiania „prehistorycznych” numerów Uranii, tych z lat 1919—1920, należy podać, że ukazało się ich tylko cztery, że są to egzemplarze dziś nie do zdobycia, że strona tytułowa nr 2 była reprodukowana na okładce Uranii nr 2 (luty) z 1967 roku. I że redakcja Uranii bardzo prosi osoby posiadające egzemplarze o wypożyczenie ich w celu sporządzenia kopii kserograficznych.

Właściwą historię Urania rozpoczyna dopiero z ukazaniem się pierwszego numeru w 1922 roku, już drukowana „przyzwoicie” (skład czcionkowy w Drukarni Technicznej przy ul. Czackiego 3/5 w Warszawie). Redaktorem jej był astronom-profesjonalista dr F. Kępiński. Później zmieniali się redaktorzy, drukarnie i ceny: nr 1 kosztował 250 marek, nr 2 — 360 mk, nr 3—4 — 1500 mk, natomiast nr 5 (w 1923 r.) „tylko” 60 groszy, było to już po reformie walutowej. W latach późniejszych cena egzemplarza w sprzedaży i prenumeracie utrzymywała się na poziomie 1—2 złotych.

Odliczając te cztery numery hektografowane jak również lata „puste” (1921, 1935, 1940—1945 oraz 1947) kiedy Urania nie wychodziła, zebrano się ogółem dodat 50 roczników, zawierających do końca 1979 roku 466 numerów w 408 zeszytach, razem ok. 13 tysięcy stron zadrukowanych, nie licząc okładek zadrukowanych bądź ilustrowanych, wkładek, dodatków bądź rocznych spisów treści. Odpowiadałoby to mniej więcej 25 tomom powyżej 500 stron liczących jakież „wielkiej encyklopedii”. To porównanie z encyklopedią nasuwa się również podczas czytania różnych zeszytów Uranii. Niektóre artykuły oceniane bywają jako mało interesujące, podczas gdy inne są pięknie studiowane; tak samo jest, gdy otworzymy encyklopedię na dowolnej stronie. Na następnym odciniek pewnych artykułów seryjnych czytelnicy oczekują z niecierpliwością, na inne skarżą się przy każdej sposobności. Członkowi redakcji trudno jest wystawić ogólną ocenę miesięcznika... Jedno jest pewne: informacje „ze świata astronomicznego”, o frapujących osiągnięciach nauki, publikowane są z ogromnym opóźnieniem. Przy tzw. cyklu produkcyjnym trwającym blisko pół roku, trudno jest konkurować z prasą codzienną, ustępującą pod tym względem jedynie wiadomościom z radia. Jako przykład: niniejszy artykuł, który przeznaczony jest do numeru październikowego, napisany był w maju, a do rąk czytelnika dostanie się przy notorycznym opóźnieniu się druku i ekspedycji — zapewne w listopadzie. Jeszcze gorzej przedstawia się sprawa, gdy artykuł w Uranii napisany jest na podstawie publikacji naukowych zagranicznych. Dochodzi wtedy czas potrzebny na zapoznanie się z literaturą, uwzględnienie tego należy również to, że i w wydawnictwie referowanym te obowiązują „cykle produkcyjne”. Stwarza to sytuację, że niekiedy redakcja rezygnuje z publikowania pewnych „nowości”, aby nie omawiać rzeczy dawno zdezaktualizowanych, o których czytelnicy już wiedzą z innych źródeł. Wspomnienie o tym autorowi niniejszego wydaje się konieczne, gdy mowa o ocenie Uranii na tle sześćdziesięciu lat historii.

„Kalendarzyk astronomiczny”, jako stała pozycja Uranii, w ciągu tych 60 lat przechodził kilka zmian. Od pierwszego numeru w 1922 r. do końca 1925 r. podawano wpływne oraz wschody i zachody Słoń-

Bardzo przydatny dla miłośników astronomii był w tych czasach „Kalendarz Ilustrowanego Kuryera Codziennego” (tzw. „krakowskiego IKC”), redagowany od 1928 r. przez prof. Tadeusza Banachiewicza, później — aż do 1939 r. przez dra Jana Gadomskiego. Zawierał on oprócz kalendarium w postaci tabel i wykresów bogato ilustrowane artykuły, i stanowił doskonałe uzupełnienie informacji dla miłośników wobec bardzo nieregularnie ukazującej się Uranii. W roku 1936 Urania, „uпорawszy się” z trudnościami, rozpoczęła regularne wydawanie w postaci kwartalnika we Lwowie pod redakcją prof. Eugeniusza Rybki. Ostatni z przedwojennej serii zeszyt Uranii ukazał się w czerwcu 1939 r. i zawierał czterostronicowy kalendarzyk na sierpień, wrzesień i październik: efemerydy (współrzędne oraz wschody i zachody) Słońca, Księżyca, siedmiu planet i trzech planetoid, minima Algola i zakrycia gwiazd przez Księżyca.

prac naukowych miłośników, niezależne od Uranii (redaktorem jest prof. Konrad Rudnicki) i rozpowszechniane jest za granicą.

Urania jako organ P.T.M.A. poświęcona jest również omawianiu spraw z życia Towarzystwa. Jest to kontynuacja rozpoczętej przed 60 laty „Kroniki T.M.A.”, miejsce do omawiania zjazdów, sesji naukowych, imprez jak obozy szkoleniowo-obserwacyjne. Od czasu do czasu zamieszczane są także listy do redakcji; zawierają one niekiedy i słowa krytyki, a jeżeli nie są cytowane dosłownie, to często dlatego, że nadają się raczej do omawiania w węższym gronie zainteresowanych...

W ciągu ostatnich dwudziestu lat dużo uwagi poświęcono ilustracjom na okładkach Uranii, szczególnie od czasów zastosowania specjalnych kamer na pojazdach kosmicznych. Ich jakość bywała różna, głównie zaleźnie od gatunku papieru. Ale ostatnio niewiele ustępują ilustracjom tych wydawnictw zagranicznych, na których usiłujemy się wzorować.

KRONIKA

Planety wokół Gwiazdy Barnarda czyli o pewnej metodzie argumentacji

Zadna chyba z gwiazd nie jest poddawana równie intensywnym co ekstensywnym badaniom astrometrycznym jak położona w Wężowniku, odległa o 6 lat światła od Słońca, Gwiazda Barnarda (GB w d. c. tekstu), o jasności wizualnej 9,5 magnitudo i największym ze znanych ruchu własnym (10,3 sekundy łuku na rok). Zainteresowanie GB budzi głównie ze względu na możliwość posiadania własnej rodziny planet. Prowadzone od 1916 obserwacje zaowocowały opublikowaną w 1963 pracą Petera van de Kampa, w której doniósł o periodycznej zmienności ruchu własnego GB i zinterpretował ją jako efekt oddziaływania grawitacyjnego niewidzialnego towarzysza, o masie mało co większej od jowiszowej i silnie ekscentrycznej orbicie. W roku 1968 ten sam autor podał dokładniejszy okres obiegu towarzysza wokół gwiazdy, a w kilka miesięcy później zaproponował hipotezę dwóch planet, okrążających gwiazdę po orbitach kołowych z okresami 26 i 12 lat. Wniosek van de Kampa próbowali potwierdzić w 1973 G. Gatewood i H. Eichhorn, w oparciu o klisze wykonane w innych niż Sproul (van de Kamp) obserwatoriach. Ponieważ nie stwierdzili oni okresowości zmian położenia GB, uznano, że odkrycie van de Kampa było jedynie efektem instrumentalnym. Ten ostatni utrzymywał wprawdzie, że nie może być mowy o błędzie, jednak konkluzje Gatewooda i Eichhorna uczyniły odkrycie wątpliwym, zaś negatywny rezultat ich pracy został zapamiętany i wykorzystany w niektórych późniejszych opracowaniach. Najbardziej bulwersujące z nich to poniekąd dysydencka koncepcja Szklowskiego unikatowości cywilizacji ziemskiej ze Wszechświatu (zob. Urania, 1979, nr 2, str. 48 dół). Negatywne konkluzje Gatewooda i Eichhorna były Szklowskimi na rękę, ponieważ wydatnie podpierały jego hipotezę. Gdyby jednak zaznajomił się on z oryginałami sprzecznych ze sobą prac, wtedy z pewnością wykazałby więcej ostrożności. Materiał, którym dysponował van de Kamp był (i jest) po prostu znacznie bardziej wartościowy od będącego przedmiotem interpretacji jego oponentów. Sam Gatewood po pewnym czasie wycofał się ze swego stanowiska i w tej chwili zgadza się już że GB posiada układ planetarny (czego dowód dał na przykład w referacie wygłoszonym na Kongresie Astro-
nautycznym w 1978 w Dubrowniku). Szkłowski nadal woli jednak cy­
tować dawne poglądy Gatewooda — nieaktualne od przynajmniej	
dwóch lat, lecz przecież lepiej pasujące do koncepcji naszej samotności. Kolejne potwierdzenie prawidłowości interpretacji van de Kampa zna­
leżeć można w jego najnowszej pracy, której wstępne rezultaty przy­
niąło marcowy Sky and Telescope. Analiza klisz z lat 1950—1978 wyka­
zała ponownie, że ruch GB zakłócany jest przez dwa ciała okrążające
ją po orbitach prawie koplanarnych, z okresami 11,7 i 20 lub więcej
lat. Przyjmując na masę GB 0,14 masy Słońca wyznaczono promienie
orbit niewidzialnych towarzyszy na 2,7 i 3,8 j. a. a ich masy na 0,8
i 0,4 masy Jowisza. Miejmy nadzieję, że te rezultaty dotrą do J. Szkłow­
skiego, a *casus* planet GB nie będzie dłużej przezeń wykorzystywany
dla wzmocnienia jego hipotezy — równie zaskakującej co dyskusyjnej.

ZBIGNIEW PAPROTNY

OBSERWACJE

Raport V 1979 o radiowym promieniowaniu Słońca

Srednie strumienie miesiąca: 6,5 (127 MHz, 29 dni obserwacji) i 149,6 su
(2800 MHz, 28 dni). Srednia miesięczna wskaźników zmienności — 0,17.

Na częstotliwości 127 MHz stwierdziliśmy w maju tylko 8 zjawisk
niezwykłych, z tego 7 to burze szumowe. Najsilniejszą była burza
z dnia 1 V (wskaźnik zmienności 2). Zaś na częstotliwości 2800 MHz
wystąpiło jedno zjawisko (22 V o godz. 1115 UT [65 su]).

Toruń, 7 czerwca 1979 r.

K. M. BORKOWSKI, H. WEŁNOWSKI

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 5/79

Plamotwórcza aktywność Słońca wysoka i nadal wzrasta. Srednia mie­
ścienna względna liczba Wolfa (month mean Wolf Number) za miesiąc

maj 1979 r. R = 139,9
W maju na widocznej tarczy Słońca zaobserwowano powstanie 48 nowych grup plam słonecznych. Wśród nich 6 grup dużych o maksymalnej powierzchni ponad 1000 jednostek, 6 grup średniej wielkości oraz 36 grup małych lub bardzo małych.

Szacunkowa średnia miesięczna plam (month mean Area of Sunspots) za miesiąc

maj 1979 r. S = 1384 \cdot 10^{-6} \text{ p.p.s.}

Wskaźnik zmienności plamowej cyklu (Solar Spot Variability Index) do listopada 1978 r. wyniósł \(Z = 14,2 \).

Średnia miesięczna konsekutwna liczba plamowa z 13 miesięcy za listopad 1978 r. wyniosła \(R = 113,5 \).

Dziennie liczby plamowe (Daily Wolf Numbers) w maju 1979 r.:

Wykorzystano: 367 obserwacji 23 obserwatorów w 31 dniach obserwacyjnych. Obserwatorzy:

Aneks redakcyjny: Do współpracy z naszą Sekcją przyłączył się Kol. Siegfried Hybner z Waidhofen/Ybbs — Austria, którego serdecznie witamy w naszym gronie.

Dąbrowa Górnicza, 7 czerwca 1979 r.

WACŁAW SZYMAŃSKI

Komunikat Oddziału Warszawskiego PTMA

Na zebraniu grupy obserwatorów w dniu 29 IV 1979 r. w lokalu Oddziału Warszawskiego z udziałem przedstawiciela Zarządu Głównego PTMA dr. K. Ziolkowskiego, Głównej Rady Naukowej doc. dr. hab. M. Bielickiego, prezesa Oddziału Warszawskiego Z. Greli oraz zaproszonych osób z innych oddziałów, postanowiono zaktywizować i rozszerzyć działalność dotychczasowej sekcji obserwacji pozycyjnych.

Proponuje się utworzenie ogólnokrajowej sekcji obserwacyjnej pod nazwą Sekcja Obserwacji Pozycyjnych i Zakryć.

Działalność Sekcji będzie obejmować:

1. Obserwacje pozycyjne planetoid i komet.
2. Obserwacje zakryć: a) gwiazd przez ciała Układu Słonecznego, w tym, zwłaszcza zakryć przez Księżyce i planetoidy, b) wzajemnych zakryć ciał Układu Słonecznego — przejścia planet dolnych przed tarczą Słońca, zaćmienia.

Dla zapewnienia warunków prowadzenia w/w obserwacji na odpowiednim poziomie przewiduje się udzielenie obserwatorom pomocy w zakresie:

a) rozprowadzania efemeryd zjawiska, b) metodyki obserwacji, c) przygotowania instrumentów i służby czasu, d) umożliwienia obserwatorom publikacji wyników obserwacji w wydawnictwach krajowych i zagranicznych.

Przewiduje się spotkania seminaryjne kierownictwa Sekcji raz na kwartał, spotkania wszystkich członków — raz na rok.

Prosimy członków PTMA pragnących uczestniczyć w pracach Sekcji o pilne pisemne przesłanie swoich zgłoszeń na ręce z-cy d/s organizacyjnych Kol. Romanu Fangora. Po otrzymaniu zgłoszeń wszyscy otrzymają ankiety dla zorientowania się w aktualnym stanie instrumentów i służby czasu poszczególnych obserwatorów. Umożliwi to udzielenie odpowiedniej pomocy, w miarę możliwości, w zakresie uzupełnienia czy usprawnienia posiadanych instrumentów, jak, aby obserwatorzy mogli prowadzić obserwacje na odpowiednim poziomie.

Prezes Oddziału PTMA
ZYGMUNT GRELA

PORADNIK OBSERWATORA

Jak wykonać okulary do narzędzi astronomicznych

Zarząd Główny PTMA w Krakowie posiada pewną ilość soczewek, z których można złożyć niezłe okulary. O sposobie nabycia ich przez członków Towarzystwa informujemy poniżej.

Proponujemy dwa zestawy szkieł w oprawach metalowych (po dwie soczewki), które złożone w odpowiedni sposób dają okulary o ogniskowych 15 i 20 mm. Soczewki zestawu należy umieścić w rurce metalowej lub ew. papierowej, wykonanej przez nawinięcie paska czarnego podklejonego papieru na wałek odpowiedniej średnicy. Wymiary metalowych opraw soczewek wyznaczają wewnętrzny wymiar rurek, wymiar zewnętrzny zależy od średnicy wyciągu okularowego. W wypadku rurki klejonej z papieru grubość nawinięcia nie mniejsza niż 1,5 do 2 mm. Klej użyty do klejenia powinien dobrze wysychać, a więc być na bazie acetonu. Można też użyć chernoutwardzalnego kleju Epidian 5. Rurkę obudowy przycinamy do wymiarów i mocujemy soczewki umieszczając między nimi odpowiednio długi dla każdego zestawu pierścien dystansowy. Ważną czynnością jest wyczerpanie jasnych miejsc wnętrza okularu oraz jego dokładne odkurzenie. Wszelkie zanieczyszczenia leżące na kolektywie będą dobrze widoczne w polu widzenia.

Zestaw 1: kolektyw $f = 34$ mm, oczna 5X. Będzie to okular typu Kellner uproszczony, o $f = 15$ mm (rys. 1).

Przy soczewce kolektywu należy umieścić pierścien-diafragmę z otworem 17 mm. Pomiędzy diafragmą a oczną należy wstawić pierścień dystansowy o długości 11,5 mm.

Zestaw 2: kolektyw $f = 32$ mm, oczna 10X. Będzie to okular typu Ramsdiena o $f = 20$ mm (rys. 2).

Kolektyw oddzielony od ocznej pierścieniem dystansowym 3,3 mm. Pozostałe wymiary okularu mogą być takie jak w zestawie 1.
Rys. 1

- obudowa
- uszczelnienie
- diafragma
- oczna
- kolektyw
- pierścień dystansowy

Rys. 2

- obudowa
- oczna
- kolektyw
- uszczelnienie
- pierścień dystansowy
Rysunki okularów i ich opis umożliwia właściwe zestawienie elementów i uzyskanie wyników.

Na zakończenie chcę przypomnieć o dokładnym wyczerpieniu wnętrza okularu oraz o usuwaniu wszelkich zanieczyszczeń. Soczewki najlepiej przemyc alkoholem przy pomocy miękkiej szmatki, starając się nie przyciskać jej do szkła. Niewłaściwe czyszczenie może powodować powstanie rys na szkle, co czyni soczewkę niezdolną do naszych celów. Do czyszczenia nie należy używać waty, ponieważ może pozostawić na powierzchni włoski.

Uszczelnienie wokół elementu kolektywu można zrobić z paska papieru podklejonego w takiej ilości, aby kolektyw „siedział” mocno i nie przesuwał się. Po spełnieniu wymienionych warunków otrzymujemy okulary, które powinny dawać dobre obrazy w polu widzenia.

Informacja

Przywilej nabycia materiałów i elementów optycznych do budowy teleskopów, jak również nabycia wydawnictw Towarzystwa i prenumeraty „Uranii” po obniżonej cenie, przysługuje jedynie członkom PTMA. Cena kompletu okularowego (zestawu) wynosi dla członków PTMA 35 zł + 10 zł koszty wysyłki i opakowania.

Forma płatności: Gotówką na miejscu w lokalu Zarządu Głównego PTMA (Kraków, ul. Soląskiego 30 m. 8), dla zamiejscowych — przez dokonanie wpłaty na konto PTMA (PKO I OM Kraków, nr 35510-16391-132) z podaniem na blendcie nazwiska, dokładnego adresu i celu wpłaty. Materiałów za zaliczeniem nie wysyła się.

KRONIKA HISTORYCZNA

250 lat obiektywu achronmatycznego

O samym Hallu wiemy bardzo mało. Wiadomo, że rodzice jego pragnęli wykształcić go na prawnika. Chyba istotnie odbył studia prawnicze, gdyż później piastował w swej siedzibie w Rochfort w Essex
urząd sędziego pokoju. Wydaje się jednak, że w młodości poświęcił się jednak w pierwszym rzędzie studiom przyrodniczym. Jednym z jego osiągnięć na tym właśnie polu było przedłożenie około 1729 r. projektu konstrukcji obiektywu achronatycznego. Nic wprawdzie nie wiemy o drodze jego poszukiwań, możemy jednak przyjąć, że do swego wynalazku mógł dojść w wyniku doświadczeń i matematycznych rozważań. Nie był on zresztą pierwszym, który zajmował się tym zagadnieniem, już bowiem w 1695 r. David Gregory (1661—1710), bratanek znanego z konstrukcji jednego z typów teleskopu zwierciadlanego Jamesa Gregory'ego (1638—1675) zalecał zestawianie obiektywów z różnych substancji w celu wyeliminowania aberracji chromatycznej.

Chester Moor Hall opracował konstrukcję obiektywu składającego się ze zbierającej soczewki z lżejszego szkła zwanego kronem i rozpraszającej z ciężkiego szkła ołowionego zwanego flintem. Ponieważ jednak sam nie szlifował soczewek, zdecydował się powierzyć tę pracę zawodowym optykom. Dla zachowania tajemnicy wynalazku szlifowanie jednej soczewki zlecił optykowi Skarlettowi w Soho, drugiej zaś optykowi Manowi na Ludgate Street w Londynie. Jednakże ani Skarlett, ani Man nie wykonał sami tej pracy, lecz z kolei powierzyli ją szlifierowi soczewek G. Bassowi. Ten zaś zauważył, że obie soczewki mają nie tylko te same średnice i pasujące do siebie krzywizny, ale że też zostały zamówione przez tego samego klienta. Odkrycie tych faktów nie odbiło się jednak ujemnie na realizacji przez Halla jego zamierzenia. W 1733 r. był już gotów pierwszy obiektyw i wkrótce Hall zlecił wykonanie pewnej liczby takich obiektywów. Jeden z nich miał natemat mieć przy średnicy 2 1/2 cala ogniskową 20 cali, co daje stosunek 1:8, a więc zupełnie nieosiągalny przy lunetach z jednosoczewkowymi obiektywami. Zdając sobie sprawę ze znaczenia swego wynalazku Hall powziął nawet zamiar rozpoczęcia produkcji obiektywów achronatycznych i w tym celu związał się z londyńskim optykiem J. Ayscough'em, jednakże realizacja tego projektu nie doszła do skutku. Z nie wyjaśnionych przyczyn Hall wkrótce przestał się interesować swoim wynalazkiem i nawet nie ogłosił go w żadnej publikacji, tak że dziś wiadomości o nim czerpiemy wyłącznie z relacji osób mu współczesnych. Nie jest wykluczone, że był człowiekiem na tyle zamożnym, że nie bardzo mu zależało na finansowym wykorzystaniu swego wynalazku.

Wkrótce potem prace nad zbudowaniem obiektywu achronatycznego podjął wspominany już John Dollond. Wywodził się on z francuskiej rodziny hugenockiej, która po uchylenu w 1685 r. przez Ludwika XIV edytu nantejskiego przeniosła się do Anglii. Początkowo był, podobnie jak jego ojciec, tkaczem jedwabiu, jednakże wcześniej zajął się optyką, mechaniką a astronomią. Porzuciwszy swój dotychczasowy zawód w 1792 r. poprowadził wraz z synem Peterem (1730—1820) założony przez tegoż w 1750 r. warsztat mechaniczno-optyczny, który dzięki wiedzy Johna Dollonda szybko zyskał rozgłos.

Problemami achronatyczności John Dollond zajmował się już od 1753 r. W swych badaniach i poszukiwaniach opierał się na optycznych pracach Isaaka Newtona, Leonharda Eulera (1707—1783) oraz szwedzkiego matematyka i astronoma Samuela Klingensierny (1698—1765). Rezultatem tej pracy był obiektyw achronatyczny opatentowany przez Dollonda w 1758 r. Nie jest przy tym wykluczone, że doświadczenie Bassa, który wcześniej szlifował obiektywy dla Halla, a potem pracował dla Dollonda, mogło być też przydatne przy konstruowaniu tego obiektywu.
Wśród optyków londyńskich pozostała jednak pamięć wynalazku Halla. W 1764 r. 35 optyków złożyło podanie o unieważnienie patentu Dollonda wobec uprzedniego wynalazku Halla. Nie miało to już zresztą większego znaczenia.

Obaj Dollondowie okazali się ludźmi przedsiębiorczymi i z korzystią dla siebie zapoczątkowali proces rozpowszechniania się lunet achromatycznych.

PRZEMYSŁAW RYBKA

KALENDARZYZK ASTRONOMICZNY

Opracował G. Sitarski

Listopad 1979 r.

Słońce

W listopadzie wstępuje w znak Strzelca i jego długość ekliptyczna wynosi wówczas 240°. Dni ciągle są coraz krótsze, o czym świadczą momenty wschodów i zachodów Słońca w Warszawie: 1 listopada Słońce wschodzi o 6h30m, zachodzi o 16h9m, a 30 listopada wschodzi o 7h20m, zachodzi o 15h29m.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>XI 1</td>
<td>24°55</td>
<td>4°36</td>
<td>22°50</td>
<td>XI 17</td>
<td>20°90</td>
<td>2°58</td>
<td>171°54</td>
</tr>
<tr>
<td>19</td>
<td>24°20</td>
<td>4°15</td>
<td>356.12</td>
<td>19</td>
<td>20°30</td>
<td>2°35</td>
<td>145°18</td>
</tr>
<tr>
<td>5</td>
<td>23.82</td>
<td>3°94</td>
<td>329.75</td>
<td>21</td>
<td>19°68</td>
<td>2°10</td>
<td>118.82</td>
</tr>
<tr>
<td>7</td>
<td>23.52</td>
<td>3°72</td>
<td>303.38</td>
<td>23</td>
<td>19°02</td>
<td>1°86</td>
<td>92.46</td>
</tr>
<tr>
<td>9</td>
<td>22.97</td>
<td>3°50</td>
<td>277.01</td>
<td>25</td>
<td>18°34</td>
<td>1°61</td>
<td>66.10</td>
</tr>
<tr>
<td>11</td>
<td>22.50</td>
<td>3°28</td>
<td>250.64</td>
<td>27</td>
<td>17°64</td>
<td>1°36</td>
<td>39.74</td>
</tr>
<tr>
<td>13</td>
<td>21.99</td>
<td>3°06</td>
<td>224.27</td>
<td>29</td>
<td>16°91</td>
<td>1°10</td>
<td>13.38</td>
</tr>
<tr>
<td>15</td>
<td>21.46</td>
<td>2°82</td>
<td>197.91</td>
<td>XII 1</td>
<td>16°15</td>
<td>0°86</td>
<td>347.02</td>
</tr>
</tbody>
</table>

B₀, L₀ — helioograficzna szerokość i długość środka tarczy.
P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
3d6h2m i 30d13h14m — momenty, w których helioograficzna długość środka tarczy wynosi 0°.

Księżyc

Bezksiężycowe noce będziemy mieli w drugiej połowie miesiąca, bowiem kolejność faz Księżyca jest w listopadzie następująca: pełnia 4d7h, ostatnia kwadrata 11d17h, nów 19d19h, pierwsza kwadrata 26d22h. W perygeum Księżyca znajdzie się dwukrotnie, 1 i 29 listopada, a w apo­geum 13 listopada. W listopadzie tarcza Księżyca zakryje kolejno aż cztery jasne ciała niebieskie: Aldebarana, Regulusa, Jowisza i Saturna; tylko zakrycie Aldebarana widoczne będzie w Europie.
Planety i planetoidy

W ostatnich dniach listopada rankiem nisko nad wschodnim horyzontem możemy próbować odnaleźć Merkurego, świecącego jak gwiazda około +0,5 wielkości. Natomiast o zmierzchu nisko nad zachodnim horyzontem odnajdziemy Wenus, jako jasną gwiazdę —3,3 wielkości. Mars widoczny jest w drugiej połowie nocy jako czerwona gwiazda +1 wielkości w gwiazdozbiorze Lwa. Po północy również w gwiazdozbiorze Lwa widoczny jest Jowisz, ale jako jasna gwiazda —1,6 wielkości; przez lunety możemy obserwować ciekawe zjawiska w układzie czterech najjaśniejszych satelitów Jowisza. Saturn wschodzi po północy i świeci na granicy gwiazdozbiorów Lwa i Panny jako gwiazda +1,3 wielkości. Pozostałe planety są niewidoczne.

Przez lunety możemy też obserwować trzy jasne planetoidy: wieczorem Ceres 8 wielkości i Pallas 10 wielkości, a prawie całą noc Westę 7,2 wielkości. Dla odnalezienia planetoid wśród gwiazd podajemy ich współrzędne równikowe dla kilku dat.

<table>
<thead>
<tr>
<th>Data 1978</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Westa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rekt.</td>
<td>dekl.</td>
<td>rekt.</td>
</tr>
<tr>
<td>XI 1</td>
<td>0h46m7</td>
<td>—9°49'</td>
<td>20h52m8</td>
</tr>
<tr>
<td>11</td>
<td>0 41.1</td>
<td>—9 36</td>
<td>20 58.8</td>
</tr>
<tr>
<td>21</td>
<td>0 37.5</td>
<td>—9 05</td>
<td>21 06.3</td>
</tr>
<tr>
<td>XII 1</td>
<td>0 36.2</td>
<td>—8 18</td>
<td>21 15.0</td>
</tr>
</tbody>
</table>

Meteory

W listopadzie promieniują dwa roje meteorów: Taurydy i Leonidy. Maksimum aktywności Taurydów przypada 8 listopada, ale warunki obserwacji są w tym roku niedobre (księżyc!). Taurydy mają podwójny radiant w gwiazdozbiorze Byka o współrzędnych: rekt. 3h44m, dekl. +14° i +22°. Leonidy promieniują od 15 do 19 listopada, a maksimum przypada na 18d1h. Warunki obserwacji nie są złe, ale rój jest bardzo mało obfity. Radiant Leonidów leży w gwiazdozbiorze Lwa i ma współrzędne: rekt. 10h8m, dekl. +22°.

* * *

3d13h Planetoida Westa w przeciwstawieniu ze Słońcem.

3/4d Księżyc 3 Jowisza ukryty jest w cieniu planety, a do brzegu tarczy zbliża się księżyc 1. O 3h1m na tarczy planety pojawia się cień 1 księżyca. O 3h51m obserwujemy koniec zaćmienia księżyca 3, który pojawi się nagle z cienia planety blisko lewego brzegu jej tarczy (patrząc przez lunetę odbijającą). O 4h9m księżyc 1 rozpoczyna przejście na tle tarczy planety, a o 4h50m obserwujemy początek zakrycia księżyca 3 przez tarczę Jowisza.

4/5d Księżyc 1 ukryty jest za tarczą Jowisza. O 3h35m obserwujemy koniec zakrycia (księżyc pojawia się spoza prawego brzegu tarczy, w lunecie odbijającej).
6d7h Bliskie złączenie Księżyca z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiorze Byka. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Północnej i Środkowej Ameryce, na północnym Atlantyku, w Europie i w północnej Afryce.

6/7d Po tarczy Jowisza wędruje cień jego 2 księżyca, podczas gdy sam księżyk rozpoznycia przejście na tle tarczy o 3h42m. Cień księżyca widoczny jest do 3h42m, a sam księżyk kończy przejście dopiero o 5h59m.

8d21h Złączenie Wenus z Merkurem w odl. 2°.

9d19h Merkury nieruchomy w rektyascencji.

10/11d O 4h10m obserwujemy początek zacmienia 3 księżyca Jowisza, a o 4h55m na tarczy planety pojawia się cień księżyca 1. Jednocześnie z dwóch stron do brzegów tarczy zbliżają się księżyce 1 i 4. Księżyk 4 skryje się za brzegiem tarczy o 6h2m, a księżyk 1 rozpocznie przejście na tle tarczy o 6h5m.

11d/15h Złączenie Wenus z Antaresem (w odl. 4°), gwiazdą pierwszej wielkości w gwiazdozbiorze Skorpiona.

11/12d O 2h3m obserwujemy początek zacmienia 1 księżyca Jowisza.

12d11h Złączenie Marsa z Księżycem w odl. 3°. O 16h bliskie złączenie Księżyca z Regulusem, gwiazdą pierwszej wielkości w gwiazdozbiorze Lwa; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Nowej Zelandii i na Antarktydzie.

12/13d Księżyk 1 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy koniec przejścia: cienia o 1h40m, księżyca 1 o 2h51m.

13d5h Bliskie złączenie Księżyca z Jowissem. Zakrycie planety przez tarczę Księżyca widoczne będzie w Południowej Ameryce, na południowym Atlantyku, w Południowej Afryce i na Antarktydzie.

13/14d O 3h25m na tarczy Jowisza pojawi się cień jego 2 księżyca.

Sam księżyk 2 rozpnoczenie przejście na tle tarczy o 5h58m.

14d O 8h Urań w złączeniu ze Słońcem. O 19h bliskie złączenie Saturna z Księżycem; zakrycie planety przez tarczę Księżyca widoczne będzie na Południowym Pacyfiku i w Ameryce Południowej.

14/15d O 2h35m obserwujemy koniec przejścia 3 księżyca Jowisza na tle tarczy planety.

15/16d O 3h50m obserwujemy koniec zakrycia 2 księżyca Jowisza przez tarczę planety.

17d18h Złączenie Marsa z Regulusem (w odl. 1°,6), gwiazdą pierwszej wielkości w gwiazdozbiorze Lwa.

18/19d Dwa zjawiska dotyczące księżyków Jowisza obserwujemy niemal w tym samym czasie: o 3h55m na tarczy Jowisza pojawi się cień jego 4 księżyca, a o 3h56m nastąpi początek zacmienia księżyca 1.

19/20d Księżyk 1 i jego cień przechodzą na tle tarczy Jowisza. Cień pojawi się o 1h17m, a księżyk 1 rozpocznę przejście o 2h30m. Cień zakończy swą wędrówkę o 3h34m, a księżyk 1 ukończに入る przejście o 4h46m.

20d O 5h dolne złączenie Merkurego ze Słońcem. O 6h Wenus w złączeniu z Neptunem w odl. 2°.

20/21d O 1h55m obserwujemy koniec zakrycia 1 księżyca Jowisza przez tarczę planety.

21d O 12h Neptun w złączeniu z Księżycem w odl. 4°, a o 15h Wenus w odl. 6°.

21/22d Do 1h42m po tarczy Jowisza wędrzuje cień jego 3 księżyca, ale sam księżyk 3 rozpocznie swoje przejście dopiero o 3h8m.

22d23h Słońce wstępuje w znak Strzelca.

22/23d O 1h4m obserwujemy początek zacmienia 2 księżyca Jowisza.

25d3h Merkury w złączeniu z Urańem w odl. 1°,7.
26/27d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy początek przejścia: cienia o 3h10m, księżyca 1 o 4h24m.
27/28d Obserwujemy początek zakryć dwóch księżyków Jowisza przez tarczę planety o 3h49m księżyca 1, a o 4h53m księżyca 4.
28/29d O 1h49m obserwujemy koniec przejścia księżyca 1 na tle tarczy Jowisza, a od 2h5m do 5h40m po tarczy planety wędruje plamka cienia księżyca 3.
29/30d O 1h Merkury nieruchomy w rektascensji.
29/30d O 3h39m obserwujemy początek zaćmienia 2 księżyca Jowisza.

Minima Algol (beta Perseusza): listopad 1d17h20m, 10d7h50m, 13d4h5m, 16d1h25m, 18d22h10m, 21d19h55m.

Momenty wszystkich zjawisk podane są w czasie środkowo-europejskim.

Zakrycia gwiazd przez Księżyc

<table>
<thead>
<tr>
<th>Data UT</th>
<th>Nr, nazwa i jasność gw., zjawisko</th>
<th>Moment (minuty) i kąty pozycyjne</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>P</td>
</tr>
<tr>
<td>XI</td>
<td></td>
<td>27,2</td>
</tr>
<tr>
<td>2d16h</td>
<td>5833 89 Psc 5,3 p</td>
<td>06,8</td>
</tr>
<tr>
<td>5 22</td>
<td>5834 α Tau 3,9 p</td>
<td>17,9</td>
</tr>
<tr>
<td>5 23</td>
<td>5835 3,9 k</td>
<td>07,0</td>
</tr>
<tr>
<td>5 27</td>
<td>5836 θ1 Tau 4,0 p</td>
<td>22,6</td>
</tr>
<tr>
<td>5 27</td>
<td>5837 θ2 Tau 3,6 k</td>
<td>50,4</td>
</tr>
<tr>
<td>5 27</td>
<td>5838 75 Tau 5,3 k</td>
<td>50,9</td>
</tr>
<tr>
<td>5 27</td>
<td>5839 θ1 Tau 4,0 k</td>
<td>03,4</td>
</tr>
<tr>
<td>5 30</td>
<td>5841 α Tau 1,1 p</td>
<td>48,3</td>
</tr>
<tr>
<td>5 31</td>
<td>5842 3,1 k</td>
<td>13,2</td>
</tr>
<tr>
<td>6 28</td>
<td>5843 115 Tau 5,3 k</td>
<td>39,4</td>
</tr>
<tr>
<td>7 22</td>
<td>5844 +18°1112 6,4 p</td>
<td>10,8</td>
</tr>
<tr>
<td>8 20</td>
<td>5845 110B Gem 6,2 p</td>
<td>16,0</td>
</tr>
<tr>
<td>8 20</td>
<td>5846 6,2 k</td>
<td>21,9</td>
</tr>
<tr>
<td>11 28</td>
<td>5847 18 Leo 5,9 k</td>
<td>01,2</td>
</tr>
<tr>
<td>11 29</td>
<td>5848 19 Leo 6,4 k</td>
<td>39,8</td>
</tr>
<tr>
<td>23 15</td>
<td>5849 226B Sgr 6,4 p</td>
<td>38,9</td>
</tr>
<tr>
<td>26 15</td>
<td>5850 40 Aqr 7,1 p</td>
<td>35,2</td>
</tr>
<tr>
<td>26 16</td>
<td>5851 7,1 k</td>
<td>—</td>
</tr>
<tr>
<td>28 14</td>
<td>5852 29 Psc 5,2 p</td>
<td>—</td>
</tr>
<tr>
<td>28 18</td>
<td>5853 =3°0002 6,3 p</td>
<td>05,2</td>
</tr>
<tr>
<td>28 18</td>
<td>5854 =3°0003 6,3 p</td>
<td>23,7</td>
</tr>
<tr>
<td>28 18</td>
<td>5855 =3°0005 7,3 p</td>
<td>54,2</td>
</tr>
<tr>
<td>29 15</td>
<td>5856 =0°149 7,3 p</td>
<td>40,3</td>
</tr>
</tbody>
</table>

Zródtlo: Rocznik Astronomiczny Obserwatorium Krakowskiego, 1979. Podane wartości A_p i A_z są średnimi dla miast: Poznań (P), Wrocław (Wr), Toruń (T), Kraków (K) i Warszawa (Wa). „p” i „k” oznacza początek wzgl. koniec zjawiska zakrycia. Momenty w czasie uniwersalnym UT.

L. ZAJDLER
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.

K. Ziołkowski — Witnesses of a birth of the Solar System.

L. Zajdler — About the sixtieth anniversary of „Urania“.

Chronicle: Planets around the Barnard’s Star or on a method of an argumentation.

Observations: An announcement of the Warsaw Division of PTMA.

Historical chronicle: The 250 years of an a chromatic objective.

Astronomical calendar.

Occultations of Stars by the Moon.

OGŁOSZENIA

Odsprzedam teleskop Newtona

Jan Kwiatkowski
ul. Słowackiego 13, 37-500 Jarosław

Kupię teleskop 250 mm

Dariusz Lejtman
ul. Bema 7, 32-200 Miechów

Kupię obiektyw refraktora 50—80 mm

Pawel Turkowski
ul. I Armii WP 5, 38-500 Sanok
Indeks 38001
SPIS TREŚCI

Michał Heller — Ewolucja Kosmosu i kosmologii.

Tomasz Kwast — Fotografowanie z nieostrą maską.

Bożena Juchniewicz — O planetoidach grupy Apollo.

Kronika historyczna: Tadeusz Banachiewicz.

Nowości wydawnicze.
Kalendarzyk astronomiczny.
Zakrycia gwiazd przez Księżyc.

Przypominamy, że w godzinach rannych w dniu 6 listopada nastąpi przejście Księżyca przez gromadę Hiad, przy czym zakryciu ulegnie szereg jasnych gwiazd, m. in. Aldebaran. Efemerydę zakryć znajdziemy w naszym kalendarzu w numerze poprzednim.

W niniejszym zeszycie zamieszczamy efemerydy zakryć gwiazd w grudniu oraz trzech zakryć, które przypadają w pierwszej połowie stycznia 1980 r. Efemerydy zakryć na rok 1980 podane będą w następnym numerze.

Wystawa „AnATOMIA CZASU”, uruchomiona w lutym br. w warszawskim Muzeum Techniki, o której pisaliśmy w czerwcowym numerze „Urania”, czynna jest obecnie od 28 lipca w Państwowym Muzeum im. Przykuckich w Jedrzejowie. Składają się na nia liczne zegary o wartości historycznej z różnych zbiorów krajowych.
Druga wojna światowa dała kosmologii radioteleskopy i teorię stanu stacjonarnego. Radioteleskopy rozwinęły się ze zdemobilizowanych radarów wojskowych, teoria stanu stacjonarnego narodziła się z dyskusji, jakie prowadzili ze sobą w czasie wojny trzej pracownicy centrum badań radarowych w Witley, w Wielkiej Brytanii.

Fred Hoyle — zwany potem enfant terrible współczesnej kosmologii — był zdecydowanym pacyfistą, jeszcze przed wojną zamienił swoją pierwotną specjalność — fizykę jądrową na dziedzinę zastosowań astronomicznych tylko dlatego, że przewidywał możliwość wykorzystania badań jądrowych do produkcji broni masowej zagłady. Ale teraz, w trakcie działań wojennych, nie wahał się długo: dobro sprawy wymagało jego współdziałania. Królewska Marynarka (Royal Navy), której gestii podlegały prace nad wynalazkiem radaru, zdecydowała się tolerować jego zupełnie nieregulaminowy sposób pracy, ponieważ Hoyle był swojego rodzaju geniuszem.

W centrum badań radarowych w Witley, po dniu wytężonej pracy, myśl trzech naukowców, uciekając od okropności wojny, często chroniła się w „bezpieczne zacisze” dociekania kosmologicznych. Wszyscy trzej byli zdecydowanymi przeciwnikami teorii Wielkiego Wybuchu, głównie z racji światopogląd-
dowych: trudno im było zgodzić się z ideą początku świata; wciąż także istniała sprzeczność pomiędzy oceną wieku Wszechświata z prawa Hubble’a a oceną wieku skał ziemskich, meteorytów i niektórych układów gwiazd. Z drugiej strony, fakt ucieczki galaktyk był dobrze potwierdzony obserwacyjnie i wydawał się nie budzić żadnych zastrzeżeń. Jak znaleźć wyjście z impasu?

Pomysł był logiczny, ale fizycznie wydawał się nieprawdopodobny. Zasada zachowania masy i energii jest uważana za podstawowe prawo fizyki, nieustanne stwarzanie materii przecząłoby tej zasadzie. Kilka dni później Gold przyznał się Bondiemu, że zrobił odpowiednie obliczenia, z których wynika, iż naruszenie zasady zachowania według jego hipotezy byłoby tak nieznaczące, że nie dałoby się wykryć żadnym doświadczeniem; w granicach błędów pomiarowych zasada zachowania zachowywałaby swoją ważność. Ale Bondi i teraz nie potraktował tego na serio. Tym razem jednak Gold zaoponował: „Pomyśl i jeżeli możesz, przytocz kontrargumenty”. Bondi pomyślał i po kilku godzinach powiedział: „Wiesz, Tommy, twój pomysł jest ciepły! W każdym razie, to nie jest niemożliwe!”.

Poglądy kosmologiczne zarówno Bondiego i Golda jak i Freda Hoyle’a wyrosły z niechęci do początkowej osobliwości pojawiającej się nieuchronnie w ortodoksyjnej kosmologii relatywistycznej. Wprawdzie tendencja wydłużania okresu ewolucji Wszechświata do minus nieskończoności wydawała się zgodna z duchem nauk przyrodniczych, niemniej jednak wynikała ona nie tyle z empirii co z poglądów filozoficznych. Obydwo wersje kosmologii stanu stacjonarnego — bo tak nazwano nową koncepcję — noszą na sobie piętno swojego filozoficznego pochodzenia. W oryginalnych pracach Bondiego, Golda i Hoyle’a znajdziemy wyjątkowo dużo — jak na czasopismo ściśle astronomiczne, w którym były publikowane — rozważań o charakterze metodologicznym lub po prostu filozoficznym. Rozważania te mają na celu pewnego rodzaju „propagande” na rzecz nowej teorii. Przy czym teoria ta w wydaniu Hoyle’a nawiązuje do kosmologii relatywistycznej, wprowadzając do niej jedynie poprawki niezbędne do uzgodnienia einsteinowskich równań pola z ideą kreacji materii. Natomiast wersja zaproponowana przez Bondiego i Golda stanowi kontynuację tradycji Milne’a a także Robertsona i Walkera. Jak u Milne’a Bondi i Gold całą kosmologię wyprowadzają z a priori przyjętego założenia, jak u Robertsona — Walkera brak dynamicznych równań pola wypełniają postulatami symetrii.

Po przedstawieniu autorów i wstępnym rekonesansie zapraszam Czytelnika do uważnej lektury obydwu prowokacyjnych artykułów. W momencie swojego ukazania się drukiem były to rzeczywiście artykuły prowokacyjne. Obydwa występowały przeciwko nietykalnej dotychczas zasadzie zachowania energii. Dla wielu ówczesnych fizyków było to prawdziwym zgorszeniem.

2. Kosmologia Bondiego — Golda

Artykuł Bondiego i Golda nosi tytuł „Teoria stanu stacjonarnego ekspandującego Wszechświata” [2]. (Idąc za tłumaczącymi książki Bondiego [3], angielski termin „steady-state” oddajemy przez „stan stacjonarny”). Od razu w pierwszych zdaniach zostajemy wprowadzeni w dziedzinę meta-naukowych rozważań: „Niczym nie ograniczona powtarzalność wszelkich eksperymentów jest fundamentalnym aksjomatem fizyki. Wnioskiem z tego aksjomatu jest niezależność wyniku eksperymentu od położenia i czasu, w jakim został on wykonany. Każdy system kosmologiczny musi zasadniczo uwzględniać to fundamentalne
założenie i — odwrotnie — odpowiednia kosmologia jest niezbędna, by to założenie uzasadnić”.

Wszystkie dotychczasowe teorie kosmologiczne były uwikłane w trudny problem ekstrapolacji: w jaki sposób ziemską fizykę i wyniki obserwacji dokonywanych na Ziemi rozciągnąć na cały Wszechświat? Problem ten próbowano rozwiązywać przyjmując załodę kosmologiczną, która — jak pamiętamy — głosi, że obraz świata widziany (nie tylko przez teleskopy ale także przez teorie fizyczne) przez dowolnie umieszczonego w przestrzeni obserwatora jest taki sam; pod warunkiem, że obserwatorzy porównują obraz świata oglądany w tej samej chwili. Bondi i Gold uważają, iż jest to dyskryminacja czasu na rzecz przestrzeni. Tymczasem to właśnie niezależność wyników doświadczenia od czasu jest podstawowym założeniem metody empirycznej. Nie pozostaje zatem nic innego jak przeformułować załodę kosmologiczną domagając się, by obraz Wszechświata był niezależny nie tylko od miejsca, w którym znajduje się obserwator, lecz również od chwili, w jakiej przeprowadza on swoje obserwacje. Postulat ten Bondi i Gold nazywają doskonałą zasadą kosmologiczną (perfect cosmological principle). Zarówno prawa fizyki, jak i wszystkie wielkoskalowe charakterystyki Wszechświata nie zmieniają się w czasie; Wszechświat znajduje się w stanie stacjonarnym. Doskonała zasada kosmologicznej i postulat stacjonarności. „Uważamy — piszą Bondi i Gold — że zasada ta jest tak doniosła, iż jesteśmy gotowi, jeśli zajdzie potrzeba, odrzucić teoretyczne ekstrapolacje z wyników doświadczeń o ile będą one pozostawać w konflikcie z doskonałą zasadą kosmologiczną, nawet gdyby to dotyczyło ogólnie uznawanych teorii. Oczywiście nigdy nie będziemy poddawać w wątpliwość bezpośrednich danych obserwacyjnych lub eksperymentalnych...”

I otoż właśnie... obserwacje astronomiczne świadczą o ucieczce galaktyk. Jak to pogodzić z postulatem stacjonarności? Znowu oddajmy głos autorom: „Jest rzeczą oczywistą, że rozszerzający się Wszechświat może być stacjonarny tylko wtedy, gdy materia jest w nim nieustannie stwarzana. Tempo stwarzania, które można wyliczyć w prosty sposób ze średniej gęstości (materii) i tempa ekspansji, może być oszacowane na najwyższej jedną cząstkę o masie protonu na jeden litr objętości na 10^9 lat”. Jest to wielkość zbyt mała, by ją wykryć jakimkolwiek doświadczeniem; hipoteza nie pozostaje więc w konflikcie z aktualnymi wynikami eksperymentów. Zasada zacho-
wania masy (energii) w teorii stanu stacjonarnego winna być inaczej interpretowana niż dotychczas. Wyobraźmy sobie obserwatora, którego teleskop sięga do odległości r. Ilość materii; jaką obserwator może oglądać nie zmienia się w czasie: pewna część materii opuści pole widzenia obserwatora, wychodząc — na skutek rozszerzania się Wszechświata — poza sferyę o promieniu r ze środkiem w miejscu, w którym znajduje się obserwator, ale dokładnie tyle samo materii zostanie stworzone wewnątrz tej sfery.

A co można powiedzieć o geometrii Wszechświata? Odpowiedź jest stosunkowo prosta: tylko geometria świata de Sittera jest zgodna z założeniami jednorodności, izotropowości i stacjonarności (czyli z doskonałą zasadą kosmologiczną). Ale świat Bondiego — Golda nie jest pusty tak jak relatywistyczny świat de Sittera. Einsteinowskie równania pola nie obowiązują w teorii stanu stacjonarnego, a co za tym idzie wniosek o pustce panującej w świecie de Sittera traci swoją ważność.

Z doskonałej zasady kosmologicznej wynikają także pewne testy obserwacyjne. Tak na przykład w rozszerzającym się świecie relatywistycznym (bez stwarzania materii) na dalszych odległościach powinniśmy widzieć więcej galaktyk, gdyż na skutek skończonej prędkości światła dalsze obszary widzimy w ich wcześniejszych okresach ewolucji, a im wcześniej tym
świat był bardziej gęsty. Natomiast w teorii stanu stacjonarnego świat wygląda zawsze tak samo i ilość galaktyk na jednostkę objętości nie zależy od odległości.

3. Kosmologia Hoyle'a

Praca Hoyle'a, zatytułowana „Nowy model rozszerzającego się Wszechświata” [4], rozpoczyna się od przytoczenia dawniej- szych poglądów głoszących ciągłe stwarzanie materii. Hoyle cytuję najpierw wypowiedź Jeansa sprzed dwudziestu laty: „Według pewnego przypuszczenia, które narzuca się z niejaką natarczywością, centra mgławic (galaktyk) mają naturę punktów osobliwych, przez które materia wlewa się do naszego wszechświata z jakiegoś innego, całkowicie zewnętrznego wymiaru przestrzennego, tak iż mieszkańcom naszego świata wydaje się, że w tych punktach materia jest nieustannie stwarzana”. Myśli tę podjął potem P. A. M. Dirac, którego wykładów Hoyle słuchał kiedyś w Cambridge. Jednakże pomysł pracy nie został zainspirowany przez żadnego z tych autorów, lecz naroǳił się z dyskusji prowadzonych z Goldem, „który — jak Hoyle lojalnie odnotowuje — zauważył, że przez wprowadzenie hipotezy ciągłego stwarzania materii dałoby się skonstruować wszechświat ze stałą gęstością materii. Ta możliwość wydawała się atrakcyjna, zwłaszcza gdy się ją zestawi z estetycznymi obiekcjami pod adresem stworzenia świata w odległej przeszłości". Hoyle dziękuje również Bondiemu za cenne uwagi dotyczące pracy oraz za liczne dyskusje na ogólnokosmiczne tematy.

Merytoryczna część artykułu zaczyna się od krótkiego przeglądu roli zasady kosmologicznej głównie w kosmologii Milne'a i kosmologii neonewtonowskiej. Hoyle, zwracając uwagę na
trudności tych teorii, proponuje rozszerzenie zasady kosmologicznej o postulat stacjonarności; tak rozszerzoną zasadę nazywa zasadą kosmologiczną w szerszym znaczeniu (cosmological principle in a wide sense). Cel swojej pracy Hoyle formułuje następująco: „Stosując ciągłą kreację materii, będziemy się starali uzyskać — w ramach ogólnej teorii względności, ale bez wprowadzania stałej kosmologicznej — wszechświat, spełniający zasadę kosmologiczną w szerszym znaczeniu i wykazującym wymagane własności ekspansji...” A więc podejście Hoyle’a jest z gruntu inne niż Bondiego i Golda. Hoyle akceptuje ogólną teorię względności wraz z jej równaniami pola grawitacyjnego, chce tylko tak zmodyfikować te równania, by z góry nie wykluczały one możliwości stwarzania materii. Einstein „wbudował” w swoje równania (lokalną) zasadę zachowania materii, założenie to należy teraz usunąć, ale jak się da najdelikatniej, tak by nie zniszczyć innych, pożądanych własności równań. Hoyle czyni to przez dodanie do równań Einsteina nowego czlonu opisującego tzw. pole kreacji materii. Okazuje się, że świat de Sittera — ale już nie pusty, jak w przypadku relatywistycznym — jest rozwiązaniem tak zmodyfikowanych równań.

W ten sposób „stwarzanie materii” zostało wcielone do kosmologii relatywistycznej. Hoyle zauważa, że „na obecnym etapie rozwoju fizyki jądrowej nie można poczynić żadnych zdecydowanych stwierdzeń odnośnie identyczności stwarzanych cząstek. Najbardziej prawdopodobnym wydaje się stwarzanie neutronów”.

4. Spory o stwarzanie materii

Struktura świata Hoyle’a jest prawie identyczna ze strukturą świata Bondiego—Golda, choć uzyskana przy pomocy odmiennych zabiegów. Bondi i Gold czytali artykuł Hoyle’a zanim został opublikowany. Przy końcu swojej pracy zamieścił oni kilka uwag krytycznych pod adresem pracy swojego kolegi; przyznali, że jego ujęcie jest eleganckie pod względem formalnym, ale wysunęli pewne zastrzeżenia co do strony koncepcyjnej. W ten sposób dyskusja nad teorią stanu stacjonarnego została zapoczątkowana już na etapie jej formułowania. I wkrótce stała się bardzo gorąca. Nic dziwnego, jakkolwiek by Bondi, Gold i Hoyle interpretowali zasady zachowania, fakt pozostanie faktem: idea nieustanego stwarzania materii zaprzecza zwykleemu rozumieniu tych zasad. Gównie z tego względu nowe idee kosmologiczne zostały przyjęte jak herezja. Ale z czasem ludzie

Teoria stanu stacjonarnego znikła z areny dociekań kosmologicznych równie nieoczekiwanie jak się pojawiła. Właśnie wtedy, gdy wydawało się, że kosmologom nie pozostało już nic innego, jak decydować pomiędzy konkurencyjnymi teoriami większością głosów, pojawiły się nowe wyniki obserwacyjne, które przechyliły szalę na stronę koncepcji Wielkiego Wybuchu i skierowały naukę o Wszechświecie na nowe tory. Ale nie wyprzedzajmy biegu wypadków... Historię trzeba opowiedzieć po kolei.

Przypisy

TOMASZ KWAST — Warszawa

FOTOGRAFOWANIE Z NIEOSTRĄ MASKĄ

Każdy, kto choć trochę zajmuje się fotografią, wie z własnej praktyki, jak trudno jest otrzymać dobre zdjęcie motywu, na którym jednocześnie są miejsca silnie oświetlone i miejsca zacienione. Jeżeli odbitkę mocno naświetlić i porządnie wywołać, tak aby wyszły szczegóły w miejscach jasnych, to cienie będą jednolicie czarne. Przeciwnie, słabe naświetlenie i słabe wywo-
łanie odbitki ukaże szczegóły w cieniach, za to miejsca jasne będą jednostajnie białe. Sprawę można ratować używając miękkiego papieru i łagodnego wywoływacza, jeszcze wcześniejszej można było zadbać, aby zdjęcie zrobić na mało kontrastowym filmie — tak czy inaczej uzyskanie dobrego zdjęcia tak kontrastowego motywu wymaga trochę zachodu.

Sytuacja taka występuje również w fotografii astronomicznej. Chciałoby się na zdjęciu zarejestrować zarówno słabe gwiazdy jak i najdelikatniejsze szczegóły mgławicy czy galaktyk, zrozumiałe jest zatem, że zdjęcia astronomiczne naświetla się w teleskopie z reguły dość długo. Tymczasem na takim zdjęciu dostajemy wprawdzie wyraźny obraz słabej struktury mgławicy czy galaktyki na jej skraju, zaś jej centrum jest na ogół prześwietlone. Wydaje się, że aby dostać obraz struktury całej mgławicy, należałoby wykonać serię zdjęć z różnymi czasami ekspozycji. Widzimy, jak pracochłonne byłoby to przedsięwzięcie.

Tu kilka słów z teorii fotografii. Zaczernienie negatywu określa się podając jego tzw. gęstość. Jeżeli negatyw w pewnym miejscu przepuszcza określony ułamek światła, to gęstość jest zdefiniowana jako logarytm odwrotności tego ułamka (przezroczystości). Np. czysta klisza przepuszcza całe promienie, czyli jej przezroczystość wynosi 1, jej gęstość jest zatem równa log 1 = 0. Bardzo mocno zaczerniony (gęsty) negatyw przepuszczający 0,01 światła będzie miał gęstość równą log (1/0,01) = log 100 = 2 itd. W „cywilnej” praktyce gęstości negatywów zawierają się w granicach od ok. 0,2 do 1,4, czemu odpowiada zakres przezroczystości negatywu a więc i jasności obiektu 30 : 1. Z kolei na specjalnych kliszach można uzyskać gęstości w zakresie od 0,2 do 4,5 (czemu odpowiada zakres jasności 10 000 : 1), ale z takiego negatywu nie sposób zrobić normalnej odbitki. A w astronomii często mamy do czynienia z obiektami o ogromnych kontrastach.

A jednak na wszystko jest rada. Niech oryginalny negatyw ma przykładowo gęstość w granicach od 0,8 (tło, nieba) do 4,0 (centrum jasnej mgławicy), a więc zakres wynosi 3,2. Wyobraźmy sobie teraz, że robimy z niego stykowo również na filmie pozytyw. Jeżeli pozytyw zostanie zaczerniony w tym samym stopniu co oryginał, to po złożeniu ich razem powinniśmy otrzymać (w zasadzie) jednolicę zaczernioną klatkę filmu. Znaczy to, że w ten sposób teoretycznie można kontrasty zlikwidować do zera. Rzecz jasna, nie o to chodzi, łatwo się już jednak domyśleć, że w celu częściowego zniesienia kontrastów
należy pozytyw zrobić odpowiednio słabiej zaczerniony, np. o gęstościach od zera w centrum mgławicy do 1,7 dla tła nieba. Taki pozytyw (maska) złożony wraz z oryginałem stanowi negatyw wprawdzie ogólne dość ciemny, ale to nie szkodzi, gdyż odbitkę pod powiększalnikiem można naświetlać tak długo, jak zajdzie potrzeba, za to gęstości negatywu będą teraz zawierać się w granicach od 0,8 + 1,7 = 2,5 do 4,0 czyli zakres gęstości wyniesie tylko 1,5. Jeżeli jeszcze maskę zrobić lekko nieostrą, to nie trzeba będzie się troszczyć o bardzo precyzyjne zgranie jej z oryginałem w powiększalniku. Nieostrość tę łatwo uzyskać przedzielając oryginał od maski podczas jej fabrykacji warstwą szkła i naświetlając światłem lekko rozproszonym.

Odbitki wykonane z takiego złożonego negatywu ukazują szczegóły absolutnie niewidoczne na zdjęciu bezpośrednim. Zdjęcia przedstawione na drugiej stronie okładki mówią same za siebie. Na zdjęciu górnym (bezpośrednim) szczegóły mgławicy widoczne są tylko na jej krawędzi, a centrum, jak można się było spodziewać, robi wrażenie przecieksonowanego. Wynik zastosowania nieostrej maski widzimy na zdjęciu dolnym — bogactwo szczegółów na tle mgławicy jest nieporównane! Tak dopiero „naprawdę” wygląda mgławica M8 (Lagoon) w Strzelcu.

Świecenie tej i dwóch pozostałych mgławic demonstrowanych na trzeciej i czwartej stronie okładki jest wynikiem tak charakterystycznego procesu, że warto poświęcić mu chwilę uwagi. Głównym składnikiem materii międzygwiazdowej jest wodor, najlżejszy i najbardziej rozpowszechniony w przyrodzie pierwiastek. Do zrozumienia mechanizmu świecenia wystarczy nam niemal już klasyczny model atomu wodoru, w którym przyjmuje się, że w atomie tym pojedynczy elektron krąży wokół pojedynczego protonu. W tak mikroskopowym obiekcie zawodzi jednak zwykła mechanika, zaś dochodzi do głosu prawa mechaniki kwantowej, w myśl których, i to jest tu najważniejsze, elektron może krążyć wokół jądra—protonu jedynie po określonych orbitach. Dozwolone jest „przeskakiwanie” z jednej orbity na drugą, przy czym aby elektron od jądra oddalić, należy mu energii dostarczyć, zaś gdy będzie on spadał na orbitę bliższą jądra, to odpowiednią porcję energii musi wypromieniować. Mówimy, że elektron w atomie może pochłaniać lub wysyłać kwanty (owe porcje) energii. Tak np. przeskokowi z orbity trzeciej (licząc od jądra) na drugą towarzyszy wysłanie kwantu światła czerwonego o długości fali 6563 Å, z czwartej na drugą wysłanie kwantu zielonego o długości fali 4861 Å itd. Jeżeli wodorowi będziemy stale dostarczać energii w tych
łanie odbitki ukaże szczegóły w cieniach, za to miejsca jasne będą jednostajnie białe. Sprawę można ratować używając miękkiego papieru i łagodnego wywoływacza, jeszcze wcześ- niej można było zadbać, aby zdjęcie zrobić na mało kontrastowym filmie — tak czy inaczej uzyskanie dobrego zdjęcia tak kontrastowego motywu wymaga trochę zachodu.

Sytuacja taka występuje również w fotografii astronomicznej. Chciałoby się na zdjęciu zarejestrować zarówno słabe gwiazdy jak i najdelikatniejsze szczegóły mgławic czy galaktyk, zrozumiałe jest zatem, że zdjęcia astronomiczne naświetla się w teleskopie z reguły dość długo. Tymczasem na takim zdjęciu dostajemy wprawdzie wyraźny obraz słabej struktury. Widzimy, jak pracochłonne byłoby to przed- sięwzięcie.

Tu kilka słów z teorii fotografii. Zaczernienie negatywu określa się podając jego tzw. gęstość. Jeżeli negatyw w pewnym miejscu przepuszcza określony ułamek światła, to gęstość jest zdefiniowana jako logarytm odwrotności tego ułamka (przezroczystości). Np. czysta klisza przepuszcza całe promieniowanie, czyli jej przezroczystość wynosi 1, jej gęstość jest zatem równa log 1 = 0. Bardzo mocno zaczerniony (gęsty) negatyw przepuszczający 0,01 światła będzie miał gęstość równą log (1/0,01) = log 100 = 2 itd. W „cywilnej” praktyce gęstości negatywów zawierają się w granicach od ok. 0,2 do 1,4, czemu odpowiada zakres przezroczystości negatywu a więc i jasności obiektu 30 : 1. Z kolei na specjalnych kliszach można uzyskać gęstości w zakresie od 0,2 do 4,5 (czemu odpowiada zakres jasności 10 000 : 1), ale z takiego negatywu nie sposób zrobić normalnej odbitki. A w astronomii często mamy do czynienia z obiektami o ogromnych kontrastach.

A jednak na wszystko jest rada. Niech oryginalny negatyw ma przykładowo gęstość w granicach od 0,8 (tło, nieba) do 4,0 (centrum jasnej mgławicy), a więc zakres wynosi 3,2. Wyobraźmy sobie teraz, że robimy z niego stykowo również na filmie pozytyw. Jeżeli pozytyw zostanie zaczerniony w tym samym stopniu co oryginał, to po złożeniu ich razem powinno się otrzymać (w zasadzie) jednolicie zaczernioną klatkę filmu. Znaczy to, że w ten sposób teoretycznie można kontrasty zlikwidować do zera. Rzecz jasna, nie o to chodzi, łatwo się już jednak domyślić, że w celu częściowego zniesienia kontrastów
należy pozytyw zrobić odpowiednio słabiej zaczerwieniony, np. o gęstościach od zera w centrum mgławicy do 1,7 dla tła nieba. Taki pozytyw (maska) złożony wraz z oryginałem stanowi negatyw wprawdzie ogólnie dość ciemny, ale to nie szkodzi, gdyż odbitkę pod powiększalnikiem można naświetlać tak długo, jak zajęte potræba, za to gęstości negatywu będą teraz zawierać się w granicach od 0,8 + 1,7 = 2,5 do 4,0 czyli zakres gęstości wyniesie tylko 1,5. Jeżeli jeszcze maskę zrobić lekko nieostrą, to nie trzeba będzie się troszczyć o bardzo precyzyjne zgranie jej z oryginałem w powiększalniku. Nieostrość tę łatwo ułożyć przedzielając oryginał od maski podczas jej fabrykacji warstwą szkła i naświetlając światłem lekko rozproszonym.

Odbitki wykonane z takiego złożonego negatywu ukazują szczegóły absolutnie niewidoczne na zdjęciu bezpośrednim. Zdjęcia przedstawione na drugiej stronie okładki mówią same za siebie. Na zdjęciu górnym (bezpośrednim) szczegóły mgławicy widoczne są tylko na jej krawędzi, a centrum, jak można się było spodziewać, robi wrażenie przeeksponowanego. Wynik zastosowania nieostrej maski widzimy na zdjęciu dolnym — bogactwo szczegółów na tle mgławicy jest nieporównane! Tak dopiero „naprawdę” wygląda mgławica M8 (Lagoon) w Strzelcu.

Świetlenie tej i dwóch pozostałych mgławic demonstrowane na trzeciej i czwartej stronie okładki jest wynikiem tak charakterystycznego procesu, że warto poświęcić mu chwilę uwagi. Głównym składnikiem materii międzygwiazdowej jest wodór, najlżejszy i najbardziej rozpowszechniony w przyrodzie pierwiastek. Do zrozumienia mechanizmu świecenia wystarczy nam niemal już klasyczny model atomu wodoru, w którym przyjmuje się, że w atomie tym pojedynczy elektron krąży wokół jądra-protonu jedynie po określonych orbitach. Dozwolone jest „przeskakiwanie” z jednej orbity na drugą, przy czym aby elektron od jądra oddalić, należy mu energii dostarczyć, zaś gdy będzie on spadał na orbitę bliższą jądra, to odpowiednią porcję energii musi wyproponiować. Mówimy, że elektron w atomie może pochłaniać lub wysyłać kwanty (owe porcje) energii. Tak np. przeskokowi z orbity trzeciej (licząc od jądra) na drugą towarzyszy wysłanie kwantu światła czerwonego o długości fali 6563 Å, z czwartej na drugą wysłanie kwantu zielonego o długości fali 4861 Å itd. Jeżeli wodorowi będziemy stałe dostarczać energii w tych
określonych porcjach, to elektrony będą wskakiwać na rozmaite orbity wysokie, a następnie samorzutnie spadać m. in. na orbitę drugą, dając charakterystyczne optyczne widmo wodoru składające się z poszczególnych linii stanowiących tzw. série Balmera.

Jest również do pomyślenia sytuacja, gdy elektronowi dostarczy się tak dużo energii, że zostanie on na dobre oderwany od protonu, czyli nastąpi tzw. jonizacja atomu. Elektron taki wcześniej czy później z jakimś protonem się połączy, czyli wskoczycy na jakąś orbitę znowu oddając nadmiar energii. Jednak tym razem nie będzie to ściśle określona porcja energii, gdyż przed połączeniem się z protonem elektron mógł mieć energię bardzo dowolną. Nie wiadomo również na którą orbitę wskoczycy. Zatem podczas łączenia się elektronów z protonami (nazywamy to rekombinacją) wodor może świecisć kwanty o energii dowolnej. Widmo zatem zjonizowanego wodoru nie będzie się składać z określonych linii, będzie natomiast widmem ciągłym.

Tak właśnie świecą owe trzy mgławice. Pozostaje wyjaśnić sobie, skąd wodor w mgławicy bierze energię niezbędną do jonizacji. Otóż źródłem tej energii są zanurzone w mgławicy gorące gwiazdy. One to właśnie dzięki swej wysokiej temperaturze emitują stosunkowo dużo promieniowania ultrafioletowego, a więc na tyle energetycznego, aby jonizować wodor, czyli odrywać elektrony od protonów nawet z najniższej orbity. Gwiazdy te zaś z kolei „biorą się” z samych mgławic. Na ich tle widać liczne ciemne plamki. To nie są dziury w mgławicach, przynajmniej nie wszędzie. W większości przypadków są to zgęszenia materii (gazu i pyłu) przesłaniające dalszy obraz. Zgęszenia te, tzw. globule, pod wpływem własnej grawitacji karkną się, ogrzewają, wreszcie zaczynają same świecić i tak powstają gwiazdy. Wiele gwiazd w tych mgławicach już po-wstało i one to jonizują swoimi promieniowaniem otaczający je wodor.

Technika nieostrej maski również może pomóc w badaniu struktury galaktyk. Przykład jej zastosowania do tego celu widzimy na pierwszej stronie okładki (galaktyka NGC 253). Nie ma zdjęć bezpośrednich, które ukazywałyby tyle szczegółów na całej powierzchni obrazu galaktyki. Dodatkową zaletą tej techniki jest ponadto możliwość jej zastosowania do negatywów uzyskanych dowolnie dawno i czekających w archiwach na wydo-bycie z nich pełnej zawartej w nich informacji.

O PLANETOIDACH Z GRUPY APOLLO

Obiekt odkryty 47 lat temu przez K. Reinmutha*) w Obserwatorium Astronomicznym w Heidelbergu zapoczątkował grupę planetoid typu Apollo. Nazwa grupy powstała od imienia nowo odkrytego obiektu. Adonis, druga planetoida zaklasyfikowana do tej grupy, została zaobserwowana po raz pierwszy w 1936 roku przez E. Delporte w Uccle, kiedy jej minimalna odległość od Ziemi była cztery razy większa od odległości Księżyca od Ziemi. W 1937 roku odkryty również przez K. Reinmutha Hermes przeszedł koło Ziemi w rekordowo małej odległości około 800 tys. km i był trzecim obiektem typu Apollo. Obecnie znanych jest już 28 przedstawicieli tej grupy. Nazwy tych planetoid i inne dodatkowe informacje o nich zawarte są w Tabeli 1. Dlaczego planetoidy te weszły w poczet tej samej grupy? Otóż mają one jedną ważną wspólną cechę, a mianowicie ich odległości perhyelium \(q \) są mniejsze od jednej jednostki astronomicznej. W Tabeli 1 umieszczone zostały jeszcze 4 dodatkowe planetoidy, których \(q \) są trochę większe od jedności. Zostały one zakwalifikowane do grupy planetoid typu Amor, bowiem badając ewolucję elementów orbit tych obiektów stwierdzono, że osiągają one \(q > 1 \) w wyniku perturbacji wywołanych przez Jowisza, czyli, że w przeszłości lub w przyszłości przechodzą one przez grupę Apollo. Niektórzy astronomowie rozpatrują więc jedną grupę planetoid typu Apollo-Amor. 16 planetoid oznaczono numerami co świadczy, że ich elementy orbity są dobrze określone i planetoidy te można umieścić w katalogu małych planet. Pozostałe są identyfikowane przez rok ich odkrycia i oznaczone dwoma literami. Pierwsza wskazuje połowę miesiąca (zaczynając od A dla okresu od 1 do 15 stycznia) roku, w którym nastąpiło odkrycie, a druga określa, który to był obiekt obserwowany w tym czasie. Dwa obiekty są oznakowane literami PL, co oznacza, że zostały odkryte podczas specjalnego programu zwanego Palomar — Leiden Survey. Odkrywca planetoidy posiada przywilej naddania jej imienia.

Szansa odkrycia planetoidy z grupy Apollo jest na ogół dość mała. Asteroidy te mają szybki ruch dzienny, małe rozmiary

*) Słynny niemiecki odkrywca małych planet, który zmarł 6 maja 1979 roku w wieku 87 lat; odkrył około 270 planetoid.
Tabela 1. Planetoidy grupy Apollo

<table>
<thead>
<tr>
<th>Nazwa</th>
<th>Odległość perhyelium (jedn. astr.)</th>
<th>Odległość aphelium (jedn. astr.)</th>
<th>Nachylenie orbity (stopnie)</th>
<th>Średnica (km)</th>
<th>Rok odkrycia</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICARUS</td>
<td>0.19</td>
<td>1.97</td>
<td>23°</td>
<td>1.0</td>
<td>1949</td>
</tr>
<tr>
<td>1978 SB</td>
<td>0.35</td>
<td>4.11</td>
<td>12</td>
<td>8.0</td>
<td>1978</td>
</tr>
<tr>
<td>1974 MA</td>
<td>0.42</td>
<td>3.09</td>
<td>23</td>
<td>4.0</td>
<td>1974</td>
</tr>
<tr>
<td>ADONIS</td>
<td>0.44</td>
<td>3.30</td>
<td>1</td>
<td>0.3</td>
<td>1936</td>
</tr>
<tr>
<td>2100 RA-SHALOM</td>
<td>0.47</td>
<td>1.20</td>
<td>16</td>
<td>3.0</td>
<td>1978</td>
</tr>
<tr>
<td>1976 UA</td>
<td>0.47</td>
<td>1.22</td>
<td>6</td>
<td>0.2</td>
<td>1976</td>
</tr>
<tr>
<td>1864 DAEDALUS</td>
<td>0.56</td>
<td>2.36</td>
<td>22</td>
<td>2.0</td>
<td>1971</td>
</tr>
<tr>
<td>1865 CERBERUS</td>
<td>0.58</td>
<td>1.58</td>
<td>16</td>
<td>1.0</td>
<td>1971</td>
</tr>
<tr>
<td>HERMES</td>
<td>0.62</td>
<td>2.66</td>
<td>6</td>
<td>1.0</td>
<td>1937</td>
</tr>
<tr>
<td>1981 MIDAS</td>
<td>0.62</td>
<td>2.93</td>
<td>40</td>
<td>1.0</td>
<td>1973</td>
</tr>
<tr>
<td>1862 APOLLO</td>
<td>0.65</td>
<td>2.29</td>
<td>6</td>
<td>2.0</td>
<td>1932</td>
</tr>
<tr>
<td>2063 BACCHUS</td>
<td>0.70</td>
<td>1.45</td>
<td>9</td>
<td>1.0</td>
<td>1977</td>
</tr>
<tr>
<td>1685 TORO</td>
<td>0.77</td>
<td>1.96</td>
<td>9</td>
<td>4.0</td>
<td>1948</td>
</tr>
<tr>
<td>2062 ATEN</td>
<td>0.79</td>
<td>1.14</td>
<td>19</td>
<td>1.0</td>
<td>1976</td>
</tr>
<tr>
<td>1977 HA</td>
<td>0.79</td>
<td>2.40</td>
<td>7</td>
<td>0.4</td>
<td>1977</td>
</tr>
<tr>
<td>PL-6753</td>
<td>0.82</td>
<td>2.42</td>
<td>7</td>
<td>2.0</td>
<td>1976</td>
</tr>
<tr>
<td>1976 WA</td>
<td>0.82</td>
<td>3.03</td>
<td>23</td>
<td>2.0</td>
<td>1976</td>
</tr>
<tr>
<td>GEOGRAPHOS</td>
<td>0.83</td>
<td>1.66</td>
<td>13</td>
<td>2.0</td>
<td>1951</td>
</tr>
<tr>
<td>1947 XC</td>
<td>0.83</td>
<td>3.67</td>
<td>1</td>
<td>2.0?</td>
<td>1947</td>
</tr>
<tr>
<td>1959 LM</td>
<td>0.83</td>
<td>1.84</td>
<td>3</td>
<td>6.0?</td>
<td>1959</td>
</tr>
<tr>
<td>1950 DA</td>
<td>0.84</td>
<td>2.53</td>
<td>12</td>
<td>2.0</td>
<td>1950</td>
</tr>
<tr>
<td>SISYPHUS</td>
<td>0.87</td>
<td>2.92</td>
<td>41</td>
<td>5.0</td>
<td>1972</td>
</tr>
<tr>
<td>1973 NA</td>
<td>0.88</td>
<td>3.98</td>
<td>68</td>
<td>3.0</td>
<td>1973</td>
</tr>
<tr>
<td>1978 CA</td>
<td>0.88</td>
<td>1.37</td>
<td>26</td>
<td>2.0</td>
<td>1978</td>
</tr>
<tr>
<td>ANTINOUS</td>
<td>0.89</td>
<td>3.63</td>
<td>18</td>
<td>2.0</td>
<td>1948</td>
</tr>
<tr>
<td>1975 YA</td>
<td>0.91</td>
<td>1.69</td>
<td>61</td>
<td>1.0</td>
<td>1975</td>
</tr>
<tr>
<td>PL-6344</td>
<td>0.94</td>
<td>4.21</td>
<td>5</td>
<td>0.4</td>
<td>1960</td>
</tr>
<tr>
<td>1978 DA</td>
<td>1.02</td>
<td>3.92</td>
<td>16</td>
<td>2.0</td>
<td>1978</td>
</tr>
<tr>
<td>QUETZALCOATL</td>
<td>1.05</td>
<td>3.99</td>
<td>21</td>
<td>1.0</td>
<td>1953</td>
</tr>
<tr>
<td>CUYO</td>
<td>1.06</td>
<td>3.23</td>
<td>24</td>
<td>2.0</td>
<td>1966</td>
</tr>
<tr>
<td>BETULIA</td>
<td>1.12</td>
<td>3.27</td>
<td>52</td>
<td>6.0</td>
<td>1950</td>
</tr>
</tbody>
</table>

(średnice około 1—3 km), jasność absolutną średnio od 16 do 18 wielkości gwiazdowych i dlatego tylko rzadko dają się obserwować nawet przy pomocy teleskopów o dużym polu widzenia. Również ponowne zaobserwowanie planetoidy jest niezmiernie trudne. Orbita wyznaczona z jednego pojawienia się obiektu i na ogół z niewielkiej ilości obserwacji wykonanych w krótkim okresie czasu, jest bardzo niepewna. Nic więc dziwnego, że wiele planetoid tej grupy zostało zagubionych. Ponowne ich wykrycie wymaga połączenia operacji obliczania elementów orbity i obserwacji przez duże teleskopy.
Pierwszy obserwacyjny program przeznaczony do systematycznych poszukiwań obiektów typu Apollo został opracowany w 1973 r. w Obserwatorium Palomarskim przez E. M. Shoemaker i E. F. Helin z Kalifornijskiego Instytutu Technologicznego. Pracując na teleskopie Schmidta odkryli 5 planetoid typu Apollo. Ch. Kowal za pomocą 1,2 m teleskopu Schmidta odkrył 5 obiektów typu Apollo-Amor, a grupa astronomów z Europejskiego Południowego Obserwatorium w Chile jeszcze 3.

Równie ważną sprawą w problemie ewolucji orbit planetoid jest ocena ilości „Apollonów”, które zostały stracone w wyniku zderzeń z planetami lub wyrzucenia z Układu Słonecznego. Szacunkowe dane jakie otrzymali E. M. Shoemaker i E. F. Helin w 1977 roku dla zderzeń z planetami ziemskej grupy i Księżycem zawarte są w Tabeli 2. Straty powstałe w grupieApollo w wyniku zderzeń z wielkimi planetami lub wyrzucenia z Układu Słonecznego są tego samego rzędu co przy zderzeniach z planetami ziemskej grupy. Sumaryczne straty powstałe w wyniku podanych wyżej przyczyn ocenia się na \(10^4\) zniszczonych obiektów (do jasności wizualnej 18 wielkości gwiazdowych) na bilion lat. Inne wyliczenia (Wetherill, 1979 rok) oparte na rozkładzie kraterów na powierzchniach planet i selenitów podają liczbę planetoid, które mogły zderzyć się z Ziemią w końcu ery prekambryjskiej (600 mln lat temu) na około 1500. Wetherill podaje również, że takie zderzenie może nastąpić raz na 250 tys. lat.

Obecnie żaden z tych obiektów nie ma kolizyjnego kursu z Ziemią. Ale w wyniku ciągłych perturbacji od planet, a w szczególności od Jowisza, wszystkie te planetoidy znajdą się w końcu na orbitach przecinających się z orbitą Ziemi. W większości przypadków zarówno Ziemia jak i planetoida typu Apollo nie będą jednocześnie w tym samym miejscu na orbicie, a więc do zderzenia nie dojdzie. Znane przypadki spotkań Ziemi z planetoidą grupy Apollo zachodziły od 25 tys. do 50 tys. lat temu.

Drugim krokiem prowadzącym do wniknięcia w tajemnicę ewolucji planetoid jest zidentyfikowanie źródeł, które ich do-

<table>
<thead>
<tr>
<th>Nazwa planety</th>
<th>Przewidywana liczba zderzeń w okresie 10(^9) lat</th>
<th>Ilość zaginionych planetoid (do jasności wizualnej 18 wielk. gw.) w okresie 10(^9) lat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars</td>
<td>0.3</td>
<td>(~200)</td>
</tr>
<tr>
<td>Ziemia</td>
<td>4.5</td>
<td>(~3600)</td>
</tr>
<tr>
<td>Wenus</td>
<td>2.5</td>
<td>(~2000)</td>
</tr>
<tr>
<td>Merkury</td>
<td>0.2</td>
<td>(~200)</td>
</tr>
<tr>
<td>Księżyc</td>
<td>0.2</td>
<td>(~200)</td>
</tr>
<tr>
<td>Ogółem</td>
<td>7.7</td>
<td>6200 (\pm) 3100</td>
</tr>
</tbody>
</table>
starczają. Z analizy widmowej wynika, że takie same minerały są obecne w planetoidach grupy Apollo jak i w różnych meteorytach. A więc może powstać pytanie jaka jest zależność między meteorytami a grupą Apollo. Wydaje się, że planetoidy tej grupy mogą być przynajmniej w części „rodzicami” meteorytów. Nie wyklucza się też że obydwa grupy ciał niebieskich mają wspólne pochodzenie. Jako jedno z możliwych źródeł dostarczających meteoryty i obiekty typu Apollo jest brany pod uwagę pas planetoid (Wetherill, 1977 rok). Rozwijane są również modele, w których źródła populacji Apollo to planetoidy, których orbity przecinają się z orbitą Marsa, oraz planetoidy, które poruszają się w rezonansie z Jowiszem w stosunku 5 : 2. Opik (1963 rok) nie wyklucza jąder komet jako głównych wnowajców pochodzących grupy Apollo. Z oszacowań Shoemakera i Helina wynika, że liczba planetoid typu Apollo otrzymana z komet krótko-okresowych jest rzędu $10^4 - 10^5$ czyli o rząd do dwu więcej od ogólnej liczby tych obiektów znanej z poprzednich rozważań. Wyjaśnienie tej różnicy wymaga dalszych badań. Pomogłoby w tym znalezienie aktywnych komet znajdujących się w procesie rozpadu na planetoidy typu Apollo. Z. Sekanina (1971 rok) sugeruje, że przykładem takiej „zaopatrującej” komety może być kometa Enckego.

Zakończyć te rozważania można wnioskiem, że planetoidy grupy Apollo mogą być ogniwem wiążącym planetoidy, komety i meteory.

KRONIKA

** Supernowe a gwiazdy typu R Korony Północnej **

W niedawnej pracy J. C. Wheeler wyraża przypuszczenie, że obiektami, z których powstają Supernowe I typu (SN I), są gwiazdy typu R CrB. Swoją pogląd uzasadnia trzema argumentami wskazującymi na podobieństwo SN I do typu R CrB: oba gatunki należą do starej populacji dysku, dla obu charakterystyczny jest deficyt wodoru, tempo ich powstawania w Galaktyce jest zbliżone do siebie. Ponieważ masa gwiazd typu R CrB jest równa około 2 masom słonecznym powstaje problem czym objaśnić wybucze SN I w galaktykach typu E, których gwiazdy składowe mają nasię spore, co najwyżej masie Słońca. Zdaniem Wheelera wodor w gwiazdach typu R CrB ulega całkowitemu wypaleniu dzięki kompletnemu przemieszaniu ich wnętrz. Konsekwencją jest dłuższy o jeden rząd wielkości czas życia tych gwiazd, w porównaniu z normalnym czasem pobytu gwiazdy na ciągu głównym.

Czarne dziury w jądrach galaktyk

Ł. M. Oziernoj i M. Reinhardt zanalizowali niedawno grawitacyjne odziaływania masowej czarnej dziury znajdującej się w środku zwanego systemu gwiazdowego — jądra galaktycznego — z otaczającymi ją gwiazdami. Rozpatrzono m. in. początkowy rozkład gwiazd wokół czarnej dziury, destrukcję gwiazd wywołaną siłami pływówymi wywieranymi przez dziurę i zachowanie się uwolnionego gazu, akrecję gazu na dziurę, wzrost jej masy w warunkach centrum Galaktyki, górą granicę masy dziury tam ewentualnie istniejącej, itd. Szczegółowo przedyskutowano zalety i niedogodności teorii, według której czarne dziury są źródłami energii kwazarów i aktywnych jąder galaktycznych. Jeśli masy czarnych dziur w jądrach normalnych galaktyk są rzeczywiście małe (a sugeruje to niska ocena maksymalnej masy dziury w Centrum Galaktyki), to hipoteza tłumacząca aktywność kwazarów i niektórych jąder galaktycznych jest do przyjęcia tylko pod warunkiem rozróżnienia ich drog ewolucyjnych od ewolucji normalnych galaktyk.

Jeszcze o MWC 349

Powstawanie gwiazd

Analizując dane obserwacyjne o miejscach tworzenia się gwiazd w obłokach molekularnych Ch. J. Lada (1) zauważa, że gwiazdy z masami większymi od 10 mas Słońca znajdują się w zewnętrznych, powierzchniowych obszarach obłoków, podczas gdy mniej masywne wydają się być rozłożone równomierne na całej płaszczyźnie zajmowanej przez
obłoki. Uwzględniając ponadto inną cechę masywnych gwiazd — wyraźną a przy tym grupową lokalizację czasową ich powstania, w pracy sugeruje się, że mechanizm formowania masywnych gwiazd inicjowany jest czynnikami zewnętrznymi, wywołującymi niestabilność grawitacyjną mgławicy protogwiezdnej. Mogą nimi być fronty uderzeniowe wywołane wybuchami Supernowych, spiralne fale gęstości, fronty jonizacyjne, zderzenia obłoków międzygwiazdowych, itd. Gwiazdy o masach mniejszych od około 9 mas słonecznych powstają w głównej mierze w procesach fragmentacji kolapsujących obłoków pyłowo-gazowych, bez wyraźnej lokalizacji czasowej tego procesu. Związek obszarów formowania gwiazd z wybuchami Supernowych znalazł kolejne potwierdzenie w pracy Wootena (2), który obserwował obłok molekularny związany z resztą Supernowej W 44, w pasmie 1,2—3,6 mikrometra, na linii 12CO. Wykryto dwa młode źródła promieniowania podczerwonego, z których jedno wydaje się być bezpośrednim rezultatem eksplozji Supernowej.

ZBIGNIEWS PAPROTNY

Satelitarne badania promieniowania reliktowego

NASA rozpatruje projekt budowy sztucznego satelity Ziemi COBE (Cosmic Background Explorer), który byłby przeznaczony do badań nad promieniowaniem szczątkowym tła, pozostałością Wielkiego Wybuchu przed kilkunastu miliardów lat. Utworzona w roku 1976 międzynarodowa grupa robocza, pracująca pod technicznym i organizacyjnym kierownictwem Centrum im. Goddarda, liczy około 100 naukowców. Wystrzelenie satelity COBE planuje się na lata 1983—1984. Umieszczony na orbicie słonecznie-synchronicznej o nachyleniu 99°, COBE krążyć będzie na wysokości 900 km nad Ziemią. Aparatura naukowa składać się będzie z pracujących w podczerwieni spectrometr i radiometru (zakres 2—300 mikrometrow) oraz radiometru fal milimetrowych o czułości 0,0003 kelwina, pracującego na długościach 3, 5, 7, 10 i 13 mm. Czułość przyrządów do badań w podczerwieni sięgnie 10⁻¹⁴ Wcm⁻² steradian. Ciało instrumentarium zamknięte zostanie w termostacie zawierającym 500 litrów ciekłego helu o temperaturze 1,8 kelwina i ulokowane w środku dużej stożkowej osłony, ekranizującej aparaturę od promieniowania nadchodzących ze Słońca i Ziemi. Stabilizację satelity zapewni rotacja z prędkością 1 obrót na minutę. Dzięki precesji orbity pełny przegląd sfery niebieskiej będzie przeprowadzony dwukrotnie w ciągu jednego roku. Planuje się przeprowadzenie badań nad kątowym i spektralnym rozkładem promieniowania reliktowego w zakresie od 2 mkm do 13 mm, z bezprecedensową czułością i dokładnością, co przybliży rozwiązanie istotnych zagadnień kosmologicznych.

ZBIGNIEWS PAPROTNY

Czy Syriusz B był białym karłem już w czasach Ptolemeusza?

Przed kilkoma laty Karl D. Rakosch i Kenneth Brecher wystąpili z hipotezą, że Syriusz B jeszcze w czasach historycznych był czerwonym olbrzymem. Do powyższego wniosku doprowadziła ich informacja zamie-
strony przez Klaudivusa Ptolemeusza w słynnym „Almageście”, gdzie Syriusz opisany jest jako czerwonawa gwiazda. To zaś oznaczałoby, iż Syriusz B w fazie białego karła nie istnieje dłużej niż dwa tysiące lat. Jednakże przejściu gwiazdy ze stadium czerwonego olbrzyma w stadium białego karła towarzyszy odrzucenie zewnętrznej warstwy materii, z której powstaje rozprężająca się mgławica planetarna. Gdyby zatem wokół Syriusza B od dwóch tysięcy lat istniała taka mgławica i rozpręgała się z szybkością 10 km/s, wówczas jej średnica kątowa osiągnęłaby dziś około 2°. Niestety, mgławicy tej nie można by dostrzec bezpośrednio ze względu na olśniewające światło Syriusza A. Większe nadzieje na jej odkrycie dawały obserwacje spektroskopowe, wykonywane niedawno przez Noacha Broscha i Isaaca Nevo z uniwersytetu w Tel Awiwie. Ale i one nie doprowadziły do wykrycia hipotetycznej mgławicy planetarnej Syriusza. Wykazały jedynie, że jej gęstość nie może być większa niż \(6 \times 10^{-8}\) atomów na metr sześcienny, a całkowita masa może wynosić najwyżej \(5 \times 10^{-4}\) masy Słońca. Jak na mgławicę planetarną jest to jednak stanowczo za mało.

Na podstawie przeprowadzonych przez Broscha i Nevo badań można więc wyciągnąć następujący wniosek: Syriusz B już w czasach Ptolemeusza był białym karłem, a rzekome zabarwienie układu w czasach starożytnych należy tłumaczyć w jakiś inny sposób (np. chwilowym za­nieczyszczeniu ziemskiej atmosfery przez pył wulkaniczny). Trzeba sobie także uświadomić, że wizualne wyznaczanie barw gwiazd — i to zarówno na podstawie obserwacji wykonywanej gołym okiem, jak i przez lunetę — nie budzi zbyt dużego zaufania. A zatem i do obserwacji starożytnych Greków należy odnosić się z pewną rezerwą.

Czy Układ Słoneczny „zderzy się” z obłokiem materii międzygwiazdowej?

Przestrzeń międzygwiazdowa nie jest całkowicie pusta. Znajdują się w niej bowiem cząstki pyłu kosmicznego i atomy wodoru, tworzące nie­kiedy obłoki o promieniu kilku parseków i gęstości wynoszącej średnio 10 atomów na jeden centymetr sześcienny. Jeden z takich obłoków — przynajmniej zdaniem Alfreda Vidal-Madjara, Jean Audouze’a, Paula Brutsona i Claudiny Laurent z Francji — znajduje się zaledwie w od­ległości 0,03 parseka od Słońca. A ponieważ zbliża się ku nam z szyb­kością 15—20 km/s, za około 5 tysięcy lat winien „zderzyć się” z naszym układem planetarnym.

Na poparcie swej tezy astrofizycy francuscy przytaczają różne argu­menty. Przede wszystkim powołują się na wiatr międzygwiazdowy, który — jak to wykazują pomiary wykonywane za pomocą sztucznych satelitów i sond kosmicznych — nadal występuje na obszarach niedaleko Słońca. A ponieważ nie jest on tak szybko, jak to häno- wano, to prawdopodobnie na pewnych odległościach od Słońca towarzyszy on wczasie odpowiedniej obserwacji z przestrzeni planety, co również wskazuje na możliwość „zderzenia się” z naszym układem planetarnym.
więcej niż w kierunku przeciwnym. Również stosunek ilości deuteru do ilości wodoru uzależniony jest od kierunku wykonywanych pomiarów, co tłumaczy się selektywnym oddziaływaniem wiatru międzygwiazdowego. Pod wpływem jego ciśnienia atomy deuteru mają się oddzielać od atomów wodoru i oddalać od nich. Znając bliżej ten mechanizm można by — zdaniem francuskich uczonych — ocenić wielkość i gęstość zbliżającego się ku nam obłoku.

Układ Słoneczny w ciągu pięciu miliardów lat swego istnienia przy najmniej 150 razy — jak oceniają Vidal-Madjar i jego koledzy — zanurzył się w obłoku materii międzygwiazdowej. Zastanawiają się oni także, czy i ewentualnie jakie to mogło mieć następstwa dla naszej planety? Po wnikliwych rozważaniach doszli do wniosku, że przejście Układu Słonecznego przez dostatecznie gęsty obłok materii międzygwiazdowej powinno wywołać duże zmiany klimatyczne na Ziemi i że z tymi właśnie wydarzeniami związane są epoki lodowe. Aby zaś uzyskać jakiś dowód na poparcie swojej tezy proponują przeprowadzenie dokładnej analizy materiału uzyskanego w ramach misji „Viking” i sprawdzenia, czy okresowe ochłodzenia na Marsie nie były czasoowo związane z epokami lodowcowymi na naszej planecie? Gdyby bowiem zmiany klimatyczne na obu planetach faktycznie występowały w tym samym czasie, mógłby się dojść do przekonywającego dowodu na to, że były one wywołane przejściami Układu Słonecznego przez obłoki materii międzygwiazdowej.

Zagadnienie powyższe nie jest wcale nowe, gdyż Fred Hoyle i Raymond A. Lyttleton już w roku 1939 w ten sposób usiłowali tłumaczyć okresowe zmiany klimatyczne na naszej planecie. To oni pierwsi wysunęli tezę, iż na skutek akreacji materii międzygwiazdowej jasność Słońca może się zwiększać, co z kolei może prowadzić do wzrostu ilości opadów na Ziemi i zlodowaczeń jej dużych obszarów. Ideę tę w roku 1975 podjął i rozwinął William Hunter McCrea (2). Na podstawie rozważań teoretycznych stwierdził jednak, że spotkanie Słońca z obłokiem materii międzygwiazdowej o gęstości mniejszej niż 100 atomów na centymetr sześcienny i poruszającym się przy tym z szybkością nie większą niż 5 do 25 km/s, nie dałoby pożądanej efekty. Dopiero przy przejściu przez obłok o gęstości od 10 do 100 tysięcy atomów na centymetr sześcienny stała słoneczna mogłaby odpowiednio wzrosnąć. Spotkania zaś Układu Słonecznego z tak gęstymi obłokami mogą zachodzić — jak sądzą McCrea — podczas przejścia najbardziej zagęszczonych części ramion spiralnych Galaktyki. Powtarza się to co około 10 milionów lat i trwa mniej więcej jeden milion lat. Natomiast czas przejścia przez sam obłok materii międzygwiazdowej — a więc czas trwania jednej epoki lodowej — wynosi średnio około 50 tysięcy lat.

Z nieco inną koncepcją w roku 1976 wystąpili Mitchel C. Begelman i Martin J. Rees (3). Oni bowiem dla odmiany przypuszczają, że przejście Układu Słonecznego przez obłok materii międzygwiazdowej już o gęstości od 100 do 1000 atomów na centymetr sześcienny towarzyszy znaczne zmniejszenie się obszaru przenikania wiatru słonecznego. A ponieważ wywiera on poważny wpływ na stan atmosfery i magnetosfery ziemijskiej, jego nagłe zaniknięcie też powinno wpływać na okresowe zmiany klimatu na naszej planecie, co z kolei może być przyczyną powstawania epok lodowych. Wreszcie glob ziemijski — jak znowu sądzą Raymont J. Talbot, Dixon Butler i Michael J. Newman — jest wówczas bardziej niż zwykle narażony na intensywne oddziaływanie promieniowania kosmicznego (4). Ponadto w okresie przejścia Układu Słoneczne-
Związki organiczne na Marsie

Zagrożenie dla życia na Marsie

Na podstawie rezultatów otrzymanych przez lądownik Vikingów, specjaliści amerykańscy ocenili prawdopodobieństwo przeżycia mikroorganizmów ziemskich na Marsie na 10⁻⁸—10⁻¹⁰. Za główny czynnik wróży życiu przeniesionemu z Ziemi na Marsa uznały nadmierne natężenie promieniowania nadfioletowego (1). Rozpowszechnione mniemanie o zabójczym działaniu innego czynnika — promieniowania nadfioletowego, przed którym powierzchnia Marsa nie byłaby chroniona, skrytykowane zostało niedawno przez V. A. Firsofa (2). Jego zdaniem pył i aerozole znajdujące się w atmosferze planety dobrze odbijają promieniowanie nadfioletowe, tlen, azot, argon i jon O₂⁺ wykazują absorbcję w zakresie UV, dodatkowo zaś atmosfera marsjańska zawiera pewną ilość ozonu (równą około

*) Zob. też B. Kuchowicz Układ Słoneczny jako kosmiczny odkurzacz, Urania Nr 4, 1978 (przypis redakcji).
1/300 zawartości O₃ w atmosferze Ziemi). Tezę Firsoffa potwierdzałby fakt, iż panele kontrolne umieszczone na lądownikach Wikingów nie wykazały oczekiwanej ściemnienia wywołanego promieniowaniem nadfioletowym.

ZBIGNIEW PAPROTYNY

OBSERWACJE

Raport VI 1979 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 40,5 (127 MHz, 28 dni obserwacji) oraz 187,0 su (2800 MHz, 23 dni). Średnia miesięczna wskaźników zmienności — 0,50.

Na częstotliwości 127 MHz stwierdzono wystąpienie 28 zjawisk niezwykłych (w tym 14 burz szumowych). Dnia 18 VI o godz. 7:27,7 UT w momencie maksimum wielkiego wybuchu (49 GB) zmierzano strumień 2900 su.

W paśmie 2800 odnotowano 4 zjawiska (wszystkie w dniach 2—5 VI). Najwyższy poziom (891 su) zarejestrowano dnia 3 VI o godz. 14:35 UT.

Toruń, 6 lipca 1979 r.

K. M. BORKOWSKI, H. WEŁNOWSKI

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 6/79

Aktywność plamotwórcza Słońca duża. Średnia miesięczna względna liczba płamowa (month mean Wolf Number) za miesiąc czerwiec 1979 r. R = 150,9
W czerwcu na widocznej tarczy Słońca zaobserwowano powstanie 42 nowych grup plam słonecznych. Wśród nich 7 grup rekurentnych (powtarzających się). Niektóre z nich o znacznej ilości plam i bardzo dużej powierzchni maksymalnej. Na przykład czterokrotnie ukazująca się grupa nr 545 w rotacji 1680, nr 577 w rotacji 1681, nr 618 w rotacji 1682 oraz nr 657 w rotacji 1683. Średnie współrzędne tej grupy $4^\circ/149^\circ$. Grupy rekurentne spowodowały znaczne zwiększenie liczb plamowych na początku lipca. Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc czerwiec 1979 r. $S = 2665 \cdot 10^{-6}$ p.p.s.

![Rys. 2. Średnie kwartalne liczby plamowe](image)

Dzienne liczby plamowe (Daily Wolf Numbers) za VI 1979:

Dąbrowa Górnicza, 7 lipca 1979 r.

WACŁAW SZYMAŃSKI

KRONIKA HISTORYCZNA

TADEUSZ BANACIIEWICZ (w 25 rocznicę śmierci)

Tadeusz Banachiewicz pochodził z podwarszawskiej rodziny ziemiańskiej. Urodził się w 1882 r. Studia astronomii ukończył na Uniwersytecie Warszawskim, gdzie uzyskał także stopień naukowy magistra w r. 1904. Uzupełniał następnie swe studia u Schwarzschilda w Getyndze, a następnie w Pułkowie. W latach 1908—1909 był młodszym asystentem w Obserwatorium Warszawskim. W r. 1910 zdał egzamin magisterski na Uniwersytecie Moskiewskim. Podjął następnie pracę asystentą w Obserwatorium im. Engelsiera w Kazaniu, gdzie przebywał do r. 1915. W latach 1915—1918 przebywał w Dorpacie (dziś Tartu), gdzie uzyskał w r. 1917 stopień magistra astronomii (odpowiednik dzisiejszej habilitacji) pełniąc kolejno funkcje asystenta, docENTA i profesora nadzwyczajnego. Po powrocie do Polski w 1918 r. był krótko docentem geodezji na Politechnice Warszawskiej, a od r. 1919 do śmierci w 1954 r. kierował jako profesor Katedrą Astronomii Uniwersytetu Jagiellońskiego rozwijając wielostopniową działalność badawczą i organizacyjno-naukową.

Banachiewicz jest bezposrednio jednym z najwybitniejszych polskich astronomów. Ogłosił ogółem ok. 240 oryginalnych prac naukowych z zakresu astronomii i dziedzin pokrewnych. W roku 1925 stworzył, a następnie rozwinął w zakresie astronomii matematycznej odmianę rachunku macierzowego zwaną rachunkiem krakowskim. Działania krakowskie ułatwiały znacznie astronomiczne prace rachunkowe i teoretyczne. Dzięki temu Banachiewicz mógł stosunkowo łatwo odkryć podstawowe, ogólne wzory poligonometrii sferycznej, uprosić znakomity algorytm metody najmniejszych kwadratów i praktykę rozwiązywania układów równań liniowych. Rachunek krakowsko wy znalazł liczne zastosowania w astronomii sferycznej, w mechanice nieba i wyznaczaniu orbit; w geodezji, a nawet w statycze konstrukcji budowlanych. Stosowany był też i jest do dziś w niektórych zagranicznych ośrodkach naukowych.

Obok istotnych osiągnięć teoretycznych w podstawowych dziedzinach astronomii klasycznej ma Banachiewicz w swoim dorobku ciekawe pomysły i realizacje metod obserwacyjnych. W Kazaniu już dał się poznać jako wytrawny astronoma-obszerwator. W 1927 r. zastosował chrontokinematograf do obserwacji zaćmienia Słońca, a w roku następnym zaproponował nawiązywanie kontynentalnych sieci geodezyjnych poprzez oceany przy wykorzystaniu obserwacji pozycyjnych Księżyca. Pod jego kierunkiem Obserwatorium Astronomiczne UJ stało się ważnym międzynarodowym ośrodkiem badań gwiazd zmienności zaćmionych. Banachiewicz był pionierem radioastronomii w Polsce. Dzięki jego staraniom uruchomiono w Krakowie w 1934 r. pierwszy polski radioteleskop. Doceniał również wielkie dla przyszłości znaczenie prac K. Ciolkowskie-
do w dziedzinie teorii napędu rakietowego. Obserwatorium Krakowskie było ośrodkiem naukowo atrakcyjnym dla zagranicznych naukowców, którzy przybywali, aby tu pogłębiać swoją wiedzę z zakresu mechaniki nieba, wyznaczania orbit i innych wysoko tu stojących dyscyplin astronomicznych.

Profesor T. Banachiewicz założył i do śmierci wydawał podstawowe dziś polskie czasopisma astronomiczne Acta Astronomica oraz Rocznik Astronomiczny Obserwatorium Krakowskiego. Był jednym z założycieli i wieloletnim prezesem Polskiego Towarzystwa Astronomicznego. Uni-kał jednak zaszczytnych nawet stanowisk administracyjnych; nie pozwolił się np. wybrać na Rektora UJ.

JAN MIETELSKI

NOWOŚCI WYDAWNICZE

Książka O atmosferach przedstawia w popularnej formie głównie osiągnięcia geofizyki i meteorologii. Pragnę jednak zwrócić na nią uwagę miłośników astronomii, ponieważ Autorzy nie zawężają się w swych rozważaniach jedynie do atmosfery ziemskiej i zjawisk w niej zachodzących, lecz — jak na to wskazuje tytuł — omawiają także atmosfery innych planet, przede wszystkim Wenus, Marsa i Jowisza.

Prezentowana pozycja jest bodajże pierwszą w Polsce popularnonaukową książką poświęconą meteorologii porównawczej, która wynika z potrzeb praktycznych — bezpośredniej eksploracji ciał Układu Słonecznego. Wczesniej pogodzie na innych planetach udzielano stosunkowo niewiele miejsca, zajmowano się raczej, w oparciu o obserwacje spektralne, fizyką atmosfer planetarnych. Obecnie nastąpiła już pora pewnych uogólnień, stworzenia meteorologii planet. Ma to znaczenie zarówno dla lepszego zrozumienia procesów meteorologicznych zachodzących w atmosferze Ziemi, jak i dla poznania pogody panującej na innych planetach, co stało się niezbędnym warunkiem projektowania przyszłych lotów statków automatycznych i załogowych na te planety.
Treści astronomiczne są zawarte zwłaszcza w rozdziale 1, zatytułowanym Słońce i planety. W następnych rozdziałach, oprócz ogólnych rozważań na temat różnego typu atmosfer, najwięcej uwagi zostało poświęcone oczywiście atmosferze Ziemi, ale też w żadanym z rozdziałów nie pominięto przedstawienia zjawisk zachodzących w atmosferach innych planet. Przede wszystkim zaprezentowano warunki panujące w atmosferze Wenus i Marsa. Omówiono również pokrótce typową pogodę panującą na tych planetach.

Autorzy przedstawiają w przystępny sposób podobieństwa oraz różnice pomiędzy atmosferą Ziemi a atmosferami innych planet, co pozwala zrozumieć mechanizmy kształtujące pogodę. Wiele spośród tych mechanizmów są wspólne dla wszystkich planet. W ten sposób doświadczenie meteorologiczne zdobyte na Ziemi, mogą być z powodzeniem stosowane na innych planetach, a z kolei odkrycia dokonane na innych planetach umożliwią lepsze zrozumienie procesów zachodzących w naszej atmosferze.

Chociaż trudno meteorologię porównawczą nazywać dziedziną astronomii, wypada jednak orientować się i w tych osiągnięciach nauki, uzyskanych głównie dzięki astronautyce.

T. ZBIGNIEW DWORAK

KALENDARZYG ASTRONOMICZNY

Opracował G. Sitarski

Grudzień 1979 r.

Słońce

W tym miesiącu osiąga najniższy punkt ekliptyki pod równikiem niebieskim wstępując 22 grudnia w znak Koziorożca. Mamy wtedy początek zimy astronomicznej oraz najdłuższą noc i najkrótszy dzień na naszej półkuli. W Warszawie 1 grudnia Słońce wschodzi o 7h21m, zachodzi o 15h28m, 22 grudnia wsch. o 7h43m, zach. o 15h26m, a 31 grudnia wsch. o 7h45m, ale zach. o 15h33m.

Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
<th>Data 1979</th>
<th>P</th>
<th>B₀</th>
<th>L₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>XII 1</td>
<td>+16°15</td>
<td>+0°86</td>
<td>347°02</td>
<td>XII 17</td>
<td>+9°34</td>
<td>-1°19</td>
<td>136°19</td>
</tr>
<tr>
<td>3</td>
<td>+15.37</td>
<td>+0.60</td>
<td>320.66</td>
<td>19</td>
<td>+8.42</td>
<td>-1.44</td>
<td>109.84</td>
</tr>
<tr>
<td>5</td>
<td>+14.57</td>
<td>+0.34</td>
<td>294.30</td>
<td>21</td>
<td>+7.48</td>
<td>-1.70</td>
<td>83.50</td>
</tr>
<tr>
<td>7</td>
<td>+13.74</td>
<td>+0.08</td>
<td>267.95</td>
<td>23</td>
<td>+6.53</td>
<td>-1.94</td>
<td>57.15</td>
</tr>
<tr>
<td>9</td>
<td>+12.90</td>
<td>-0.16</td>
<td>241.60</td>
<td>25</td>
<td>+5.57</td>
<td>-2.19</td>
<td>30.80</td>
</tr>
<tr>
<td>11</td>
<td>+12.04</td>
<td>+0.42</td>
<td>215.24</td>
<td>27</td>
<td>+4.81</td>
<td>-2.43</td>
<td>4.46</td>
</tr>
<tr>
<td>13</td>
<td>+11.15</td>
<td>-0.68</td>
<td>188.89</td>
<td>29</td>
<td>+3.64</td>
<td>-2.67</td>
<td>338.12</td>
</tr>
<tr>
<td>15</td>
<td>+10.26</td>
<td>-0.94</td>
<td>162.54</td>
<td>31</td>
<td>+2.68</td>
<td>-2.91</td>
<td>311.78</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
B₀, L₀ — heliograficzna szerokość i długość środka tarczy.
27d21h10m — heliograficzna długość środka tarczy wynosi 0°.
Księżyc

W pierwszej połowie miesiąca Księżyc świecący wysoko na niebie przeszkadza swym blaskiem w obserwacjach, bowiem kolejność faz Księżyca jest w grudniu następująca: pełnia 3d19h, ostatnia kwadra 11d15h, nów 19d9h, pierwsza kwadra 26d6h. Najdalej od Ziemi Księżyc znajduje się 11 grudnia, a najbliżej Ziemi 23 grudnia. W grudniu tarcza Księżyca zakryje Aldebarana, najjaśniejszą gwiazdę w gwiazdozbiorze Byka; zakrycie to będzie widoczne w Europie. Ponadto tarcza Księżyca zakryje jeszcze raz Aldebarana, a także Regulusa, Jowisza i Saturna, ale zjawiska te będą widoczne tylko na półkuli południowej.

Planety i planetoidy

W grudniu mamy dobre warunki widoczności Merkurego; odnajdziemy go rankiem nad wschodnim horyzontem jako gwiazdę około —0.4 wielkości. Natomiast wieczorem święci pięknym blaskiem Wenus (—3.4 wielkości), z dnia na dzień coraz wyżej nad zachodnim horyzontem. Mars i Jowisz wschodzącą przed północą i świecą w gwiazdozbiorze Lwa, Mars jako czerwona gwiazda około +0.4 wielkości, a Jowisz jako jasna gwiazda —1.8 wielkości; przez lunety możemy obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyków Jowisza. Satur wchodzi około północy i świeci na granicy gwiazdozbiorów Lwa i Panny (+1.2 wielk. gwiazd.). Uran, Neptune i Pluton przebywają na niebie blisko Słońca i są niewidoczne.

Przez lunety możemy też odnaleźć trzy spośród czterech najjaśniejszych planetoid. Ceres ok. 8 wielkości widoczna jest wieczorem na granicy gwiazdozbiorów Wieloryba i Ryb. Juno ok. 8.5 wielkości prawie całą noc w gwiazdozbiorze Małego Psa oraz Westa 7.5 wielkości wieczorem w gwiazdozbiorze Wieloryba. Dla łatwiejszego zlokalizowania planetoid na niebie podajemy ich współrzędne równikowe dla kilku dat.

<table>
<thead>
<tr>
<th>Data 1978</th>
<th>Ceres</th>
<th>Pallas</th>
<th>Westa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rekt.</td>
<td>dekl.</td>
<td>rekt.</td>
</tr>
<tr>
<td>XII 1</td>
<td>0h36m2</td>
<td>—8°18'</td>
<td>7h47m4</td>
</tr>
<tr>
<td>11</td>
<td>0 37.2</td>
<td>—7 17</td>
<td>7 45.5</td>
</tr>
<tr>
<td>21</td>
<td>0 40.3</td>
<td>—6 06</td>
<td>7 40.5</td>
</tr>
<tr>
<td>31</td>
<td>0 45.4</td>
<td>—4 46</td>
<td>7 33.0</td>
</tr>
</tbody>
</table>

Meteory

W grudniu promieniują dwa stałe roje meteorów: Geminidy i Ursydy. Geminidy promieniują od 7 do 15 grudnia, a maksimum przypadka 14 grudnia przed północą, radiant leży w gwiazdozbiorze Bliźniąt i ma współrzędne: rekt. 7h28m, dekl. +32°; ród jest bogaty, możemy obserwować spadek nawet kilkudziesięciu meteorów w ciągu godziny, a warunki obserwacji są w tym roku dobre. Ursydy mają radiant w gwiaz-
dozbiorze Małej Niedźwiedzicy (rekt. 14h28m, dekl. +78°), promieniują od 14 do 24 grudnia, a maksimum przypada 22 grudnia; rój jest bardzo słaby, ale warunki obserwacji są w tym roku bardzo dobre, a istnieje pilna potrzeba obserwacji tego roju.

* * *

1d13h Planetoida Ceres nieruchoma w rektascensji.

1/2d Księżyca 2 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy koniec przejścia cienia (o 0h41m) oraz przejście księżyca 2 od 0h18m do 3h9m.

2/3d O 0h39m obserwujemy koniec zakrycia 3 księżyca Jowisza przez tarczę planety.

3d17h Bliskie złączenie Aldebarana, gwiazdy pierwszej wielkości w gwiazdozbiorze Byka, z Księżyca. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Azji, w Północnym Pacyfiku i na Alascie.

4/5d O 2h10m obserwujemy początek zaćmienia 1 księżyca Jowisza.

5d1h Złączenie Merkurego z Uranem w odl. 2°.

5/6d Obserwujemy wędrówkę cienia 4 księżyca po tarczy Jowisza oraz przejście księżyca 1 i jego cienia na tle tarczy planety. Cień księżyca 4 już wędruje po tarczy, kiedy o 23h32m pojawi się na niej cień księżyca 1. O 0h45m księżyca 1 rozpoczyna przejście na tle tarczy, a o 1h48m cień księżyca 1 kończy przejście. Cień księżyca 4 widoczny jest do 2h26m. Księżyca 1 kończy swoje przejście o 3h1m.

6/7d O 0h10m obserwujemy koniec zakrycia 1 księżyca Jowisza przez tarczę planety.

7d17h Merkury w największym zachodnim odchyleńiu od Słońca (21°).

8/9d Księżyca 2 i jego cień przechodzą na tle tarczy Jowisza. O 0h24m na tarczy planety pojawia się cień księżyca 2, a sam księżyca rozpoczyna przejście na tarczy o 2h51m. Cień kończy przejście o 3h15m, a księżyca 2 o 5h42m.

9d24h Bliskie złączenie Regulusa, gwiazdy pierwszej wielkości w gwiazdozbiorze Lwa, z Księżyca. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Południowej Afryce, w południowej części Oceanu Indyjskiego i na Antarktydzie.

9/10d Księżyca 3 Jowisza ukryty jest w cieniu planety. O 23h37m obserwujemy koniec zaćmienia, kiedy to księżyca 3 pojawi się nagle blisko lewego brzegu tarczy (w lunecie odwracającej). O 1h3m nastąpi początek zakrycia 3 księżyca, który zostanie ukryty za tarczą planety do 4h34m.

10d19h Złączenie Marsa z Księżyca w odl. 2°. O 21h bliskie złączenie Jowisza z Księżyca; zakrycie planety przez tarczę Księżyca widoczne będzie we wschodnich Indiach, w Australii i w Nowej Zelandii.

10/11d Księżyca 2 Jowisza ukryty jest w cieniu, a potem za tarczą planety. O 0h52m obserwujemy koniec zakrycia.

11/12d O 4h3m nastąpi początek zaćmienia 1 księżyca Jowisza.

12d O 6h bliskie złączenie Saturna z Księżyca; zakrycie planety przez tarczę Księżyca widoczne będzie na Północnym Atlantyku i w Afryce. O 21h Neptun w złączeniu ze Słońcem.

12/13d Księżyca 1 i jego cień przechodzą na tle tarczy Jowisza. Cień
księżyc 1 rozpocznie przejście o 1h25m, a sam księżyc 1 o 2h38m. Ko-
niec przejścia cienia nastąpi o 3h41m, a samego księżyca o 4h53m.
13d18h Złączenie Marsa z Jowiszem w odległości 1°7.
13/14d O 2h2m obserwujemy koniec zakrycia 1 księżycu Jowisza
przez tarczę planety.
15/16d O 2h58m na tarczy Jowisza pojawi się plamka cienia jego
2 księżycu.
16d19h Uran w złączeniu z Księżyce w odl. 5°.
16/17d O 2h59m nastąpi początek, a o 3h35m koniec zaćmienia 3
księżycu Jowisza. O 4h53m nastąpi jeszcze początek zakrycia tego księ-
życa przez tarczę planety.
17d21h Złączenie Merkurego z Księżyce w odl. 4°.
18d23h Merkury w złączeniu z Antaresem (w odl. 6°), gwiazdą pier-
wszej wielkości w gwiazdozbiorze Skorpiona.
19/20d O 3h18m na tarczy Jowisza pojawi się cień jego 1 księżyca.
20/21d O 0h25m obserwujemy początek zaćmienia, a o 3h53m koniec
zakrycia 1 księżycu Jowisza przez tarczę planety.
21d18h Wenus w złączeniu z Księżyce w odl. 5°. Wiedzałem nad
zachodnim horyzontem obserwujemy Wenus w pięknej konfiguracji
z sierpem Księżyca.
21/22d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza. Ob-
srerwujemy koniec przejścia: cienia o 0h3m i samego księżyca o 1h12m.
22d12h10m Słońce wstępuje w znak Koziorożca, jego długość ekli-
ptyczna wynosi 270°; mamy początek zimy astronomicznej.
22/23d O 2h53m obserwujemy początek przejścia 4 księżyca Jo-
wisza na tle tarczy planety.
23/24d O 3h56m początek zaćmienia 3 księżyca Jowisza. Księżyc ten
zniknie nagle w cieniu planety w odległości większej niż średnica tar-
czy od jej lewego brzegu (w lunecie odwracająccej).
24d6h Planetoida Westa nieruchoma w rektascensji.
27d O 6h Wenus nieruchomy w rektascensji. O 8h złączenie Merku-
rego z Neptunem w odl. 1°4.
27/28d O 1h57m obserwujemy koniec przejścia 3 księżyca Jowisza
na tle tarczy planety, a o 2h18m początek zaćmienia księżyca 1.
28/29d Księżyc 1 i jego cień przechodzą na tle tarczy Jowisza. Cień
księżycu 1 widoczny jest od 23h40m, a sam księżyec rozpoczyna przejście
o 0h46m. Cień kończy przejście o 1h56m, a księżyc 1 o 3h1m.
29/30d O 0h10m obserwujemy koniec zakrycia 1 księżycu Jowisza
przez tarczę planety.
30/31d O 0h20m nastąpi początek zaćmienia 4 księżyca Jowisza. Księ-
ży 1 zniknie w cieniu planety daleko od jej lewego brzegu (patrząc
przez lunetę odwracającą), w odległości większej niż dwie średnice tar-
czy. Koniec zaćmienia (w odległości większej niż średnica tarczy) obser-
wujemy o 5h0m.
31d1h Po raz drugi w tym miesiącu bliskie złączenie Księżyca z Al-
debaranem. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie
w Środkowej i Północnej Ameryce, w Europie, w Północnej Afryce
i w Azji Mniejszej.
31/1d O 9h14m nastąpi początek zaćmienia 2 księżyca Jowisza.
Minima Algola (beta Perseusza): grudzień 3d6h20m, 6d3h5m, 8d23h55m,
11d20h40m, 14d17h35m, 26d4h50m, 29d1h5m, 31d21h55m.
Momenty wszystkich zjawisk podane są w czasie środkowo-euro-
pejskim.
Zakrycia gwiazd przez Księżyc

<table>
<thead>
<tr>
<th>Data UT</th>
<th>Nr, nazwa i jasność gw., zjawisko</th>
<th>Moment (minuty) i kąty pozycyjne (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XII 6h 23</td>
<td>5857 74 Gem 5,2 k</td>
<td>P</td>
</tr>
<tr>
<td>25 20</td>
<td>5858 27 Psc 5,1 p</td>
<td>Wr</td>
</tr>
<tr>
<td>26 16</td>
<td>5859 104B Cet 7,1 p</td>
<td>T</td>
</tr>
<tr>
<td>27 17</td>
<td>5860 v Psc 4,7 p</td>
<td>K</td>
</tr>
<tr>
<td>28 23</td>
<td>5861 µ Cet 4,4 p</td>
<td>Wa</td>
</tr>
<tr>
<td>29 16</td>
<td>5862 +12° 477 6,2 p</td>
<td>A_p</td>
</tr>
<tr>
<td>29 18</td>
<td>5863 5° Tau 4,3 p</td>
<td>A_z</td>
</tr>
<tr>
<td>29 23</td>
<td>5864 +13° 579 6,9 p</td>
<td></td>
</tr>
<tr>
<td>30 15</td>
<td>5865 γ Tau 3,9 p</td>
<td>p</td>
</tr>
<tr>
<td>30 17</td>
<td>5866 70 Tau 6,4 p</td>
<td>k</td>
</tr>
<tr>
<td>30 19</td>
<td>5867 θ1 Tau 4,0 p</td>
<td></td>
</tr>
<tr>
<td>30 19</td>
<td>5868 θ2 Tau 3,6 p</td>
<td></td>
</tr>
<tr>
<td>30 20</td>
<td>5869 75 Tau 5,3 p</td>
<td></td>
</tr>
<tr>
<td>30 20</td>
<td>5870 264B Tau 4,8 p</td>
<td></td>
</tr>
<tr>
<td>30 22</td>
<td>5871 275B Tau 6,5 p</td>
<td></td>
</tr>
<tr>
<td>30 23</td>
<td>5872 α Tau 1,1 p</td>
<td></td>
</tr>
<tr>
<td>30 24</td>
<td>5873 α Tau 1,1 k</td>
<td></td>
</tr>
<tr>
<td>31 21</td>
<td>5874 115 Tau 5,3 p</td>
<td></td>
</tr>
<tr>
<td>I 9 25</td>
<td>5875 46 Vir 6,1 p</td>
<td></td>
</tr>
<tr>
<td>9 25</td>
<td>5876 46 Vir 6,1 k</td>
<td></td>
</tr>
<tr>
<td>9 28</td>
<td>5877 48 Vir 6,5 k</td>
<td></td>
</tr>
</tbody>
</table>

Źródło: Do poz. 5874 Rocznik Astronomiczny Obserwatorium Krakowski na rok 1979. Podane wartości kątów pozycyjnych są średnimi dla miast: Poznań (P), Wrocław (Wr), Toruń (T), Kraków (K) i Warszawa (Wa). „p” i „k” oznacza początek wzgl. koniec zjawiska zakrycia. Momenty w czasie uniwersalnym. Efemerydy zakryć na rok 1980 będą podane w innym układzie, ponieważ redakcja Rocznika nie będzie ich więcej drukować.

L. ZAJDLER

OGŁOSZENIE

Upřeźniej informujemy, że ZG PTMA posiada w sprzedaży płyty szklane do szlifowania zwierciadeł teleskopów w następujących rodzajach:

- Ø = 150 mm grubość 19 mm cena za 1 szt. 90 zł
- Ø = 250 mm grubość 25 mm cena za 1 szt. 280 zł
- Ø = 300 mm grubość 30 mm cena za 1 szt. 680 zł

Ponadto posiadamty również proszki polerskie rozprowadzone w porcjach 5 kg/3g członkom PTMA w cenie 5 zł za porcję.

Ze względu na ograniczoną ilość materiałów ZG PTMA ustala następujące zasady przy zakupach wymienionych materiałów:

- płyty Ø — 150 mm przeznaczyć do wolnej sprzedaży członkom PTMA
- płyty Ø — 250 mm sprzedać członkom Towarzystwa, którzy legitymujeją się odpowiednim doświadczeniem przy budowie instrumentów;
- płyty Ø — 300 mm sprzedać wyłącznie członkom Towarzystwa posiadającym odpowiednie kwalifikacje.

Sprzedaż wszystkich rodzajów płyty i materiałów prowadzona jest bezpośrednio przez Biuro ZG członkom PTMA z aktualnie opłaconymi składkami na podstawie zamówienia umieszczonych na odwrocie blankietu PKO przy pomocy którego dokonano wpłaty. Równocześnie informujemy, że broszura A. Rybarskiego i Z. Serkowskiego „Amatorski Teleskop Zwierciadłany” wyd. II niezmiennie będzie w sprzedaży w Biurze ZG w grudniu bieżącego roku.
CONTENTS

M. Heller — Evolution of the Cosmos and cosmology.
T. Kwast — Photographing with an unsharp mask.
B. Juchniewicz — On planetoids of the Apollo group.

Observations.

Historical chronicle: Tadeusz Banachiewicz.
New books.
Astronomical calendar.

Occultations of Stars by the Moon.

Do członków PTMA

Indeks 38001

Drukarnia Związkowa w Krakowie — 4826/79 — 1-9 — 3.300
Stanisław R. Brzostkiewicz — Fotografia w służbie astronomii.

Zgodnie z porozumieniem z wydawnictwem „Rocznik Astronomiczny Obserwatorium Krakowskiego” rozpoczęły od 1980 r. efemerydy zakryć gwiazd przez Księżyc publikowane będą jedynie w „Uranii”. Efemerydy te opracowuje zespół (Marek Zawilski i Zbigniew Rzepka) z Sekcji Obserwacji Pozycyjnych i Zakryć, o której działalności doniosłyśmy w zeszycie poprzednim. Efemerydy ukazywać się będą w odcinkach kwartalnych.

W nocy 30/31 grudnia obserwujemy zakrycie Aldebarana przez Księżyc. Widoczne ono będzie jedynie w południowej części kraju. Wg efemerydy „Rocznika Krakowskiego” na 1979 r. w Krakowie trwać będzie od 0h58,6 do 2h01,2 cse. Zachód Księżyca o 4h,9; Księżyc na 2 dni przed pełnią.

Kronika historyczna: Michał Kamieński.

Kalendarzyk astronomiczny.
STANISŁAW R. BRZOSTKIEWICZ — Dąbrowa Górnicza

FOTOGRAFIA W SŁUŻBIE ASTRONOMII

Do połowy ubiegłego stulecia jedynie oko ludzkie zdolne było rejestrować promieniowanie gwiazd i innych ciał niebieskich. Pod tym względem posiada ono zresztą wiele korzystnych właściwości. Przede wszystkim bardzo szybko reaguje na światło i jest niezwykle na nie czułe. Lecz oceny ludzkiego oka są bardzo subiektywne, wskutek czego występują niekiedy dość duże różnice w ocenach poszczególnych obserwatorów. Wad tych nie wykazuje fotografia, toteż wkrótce po odkryciu znalazła zastosowanie w obserwacjach astronomicznych.

Dziś fotografia znajduje zastosowanie prawie we wszystkich przejawach ludzkiej działalności. Jednak dla astronomii ma szczególnie duże znaczenie, gdyż obok trwałego i wiernego zobrazowania różnych zjawisk na niebie umożliwia badanie i tych obiektów kosmicznych, które są niedostępne do obserwacji dla ludzkiego oka. Wykorzystywana jest po prostu zdolność fotograficznej warstwy emulsyjnej do akumulowania skutków działania małych nawet kwantów światła, niezgodnych podrażniać siatkówki oka i wywołać obrazu w naszym mózgu. Przy długim oświetleniu (ekspozycji) zostają zarejestrowane na kliçu lub filmie fotograficznym i te obiekty kosmiczne, których byśmy nie ujrzeni przez największe nawet teleskopy świata. Miliardy gwiazd Drogi Mlecznej, delikatne struktury włókniste mgławic gazowo-pyłowych i słabo świecące obłoczki odległych galaktyk bez pomocy fotografii pozostawałyby prawdopodobnie do dziś nieznane.

Wynalazcą fotografii był malarz francuski Louis Jacques Daguerre (1789—1851), który w roku 1839 otrzymał pierwsze zdjęcie, czyli tzw. „dagerotyp”. Natomiast za początek fotografii astronomicznej można uważać rok 1850, kiedy to astronom amerykański William Cranch Bond (1769—1859) za pomocą refraktora o średnicy 38 cm uzyskał zdjęcie Księżyca. Wkrótce potem fotografię zastosowano do obserwacji planet, a w roku 1857 angielski miłośnik astronomii Warren de la Rue (1815—1889) zaczął heliografem o średnicy 86 mm i ogniskowej 1270 mm systematycznie fotografować Słońce. Trudność związana z jego dużą jasnością pokonał za pomocą wąskiej, szybko poruszającej się w polu widzenia szczeliny.

W roku 1877 fotografią Słońca zainteresował się sławny astrofizyk francuski Jules Janssen (1824—1907), osiągając w tej
dziedzinie tak dobre wyniki, że na lepsze trzeba było czekać do początków naszego stulecia. W zaprojektowanym przez siebie heliografie po raz pierwszy użył obiektywu dostosowanego do obserwacji w okolicy linii widmowej G. Ponadto zastosował specjalny układ optyczny, powiększający obraz tarczy słonecznej do średnicy 300 mm. Używał już oczywiście klisz kolodionowych, charakteryzujących się bardzo drobnym ziarnem i dość dużą gradacją w oddawaniu światła i cienia. I chociaż nie dorównywały one współczesnemu materiałowemu negatywowemu, to jednak były na tyle czułe, że do uzyskania obrazu Słońca wystarczył bardzo krótki czas ekspozycji (od 0,003 do 0,005 sekundy). Otrzymane na nich przez Janssena zdjęcia zawierają wiele delikatnych szczegółów fotosfery, zwłaszcza zaś granulacji i półcieni plam.

Dużo gorsze wyniki, przynajmniej w początkowym okresie fotografii astronomicznej, uzyskano w przypadku planet i Księżyca. Obserwacje fotograficzne tych obiektów znacznie bowiem ustępują obserwacjom wizualnym, a główna tego przyczyna tkwi w niepokoju i drganiach powietrza, co powoduje zacieranie się drobnych szczegółów w obrazach dawanych przez lunetę. Zdarza się wprawdzie, że na moment cała masa powietrza na drodze promieni świetlnych wpadających do obiektywu lunety znajdzie się w spoczynku. Oko ludzkie potrafi wykorzystać te krótkie momenty spokoju ziemskiej atmosfery i zarejestrować wszystkie subtelne szczegóły, które wówczas są dobrze widoczne. Ale naświetlenie emulsji fotograficznej trwa stosunkowo długo i skutkiem tego sumuje ona dochodzące do niej światło, rejestrując wszystkie migotania i falowania powietrza. Dlatego też na fotografiach planet i Księżyca widać dużo mniej szczegółów aniżeli można dostrzec gołym okiem za pomocą tej samej lunety.

Mimo tych braków fotografia w dużym stopniu przyczyniła się do lepszego poznania topografii Księżyca i planet. Przede wszystkim każde zdjęcie fotograficzne jest pewnego rodzaju dokumentem, który w dowolnej chwili można poddawać wnikliwym badaniom. Ponadto dostarcza ono obiektywnych danych o powierzchni badanej planety lub Księżyca, doskonale uzupełniających subiektywne obserwacje wizualne. Dziś zresztą obiekty te fotografowane są z bliska za pomocą sond kosmicznych, drogą radiową przekazujących na Ziemię zdjęcia o nieosiągalnej dotąd sile rozdzielczej. Dzięki temu posiadamy już bardzo szczegółowe mapy powierzchni Księżyca, Merkurego i Marsa.
Początkowo materiały fotograficzne były mało czułe i dlatego astronomowie z konieczności ograniczali się wówczas do fotografowania Księżyca, Słońca i planet. Dużo jednak większe osiągnięcia zanotowano w fotografii gwiazd, mgławic i galaktyk, chociaż w pierwszym okresie ten zakres obserwacji fotograficznych wydawał się mało obiecujący. Zapoczątkował go astronom angielski Dawid D. Gill (1843—1914), który w roku 1882 na Przylądku Dobrej Nadziei sfotografował jasną kometę. Wygląda ona na otrzymanej fotografii okazale, ale większe wrażenie na astronomów zrobiła liczba zarejestrowanych na niej gwiazd. Zdjęcie to, uzyskane za pomocą obiektywu o średnicy 60 mm i ogniskowej 280 mm, po raz pierwszy ujawniło wartość fotografii dla celów kartografii nieba. Nic więc dziwnego, że Gil z zapałem poświęcił się fotografii astronomicznej.

Świetne — jak na owe czasy — zdjęcia Gilla, otrzymane za pomocą astrokamery o średnicy 160 mm i światłosile 1 : 8,6, pokrywają niemal całe niebo południowe. To właśnie na ich podstawie astronom holenderski Jacobus Kapteyn (1851—1922) opracował wydany w latach 1896—1900 katalog „Cape Photographic Durchmusterung”, który obejmuje 454 875 gwiazd w deklinacji od -23° do -90°.Stanowi on doskonale uzupełnienie wydanej w latach 1852—1859 przez Fryderyka W. A. Argelander (1799—1875) i jego współpracowników klasycznej pracy „Bonner Durchmusterung”, zawierającej pozycje i jasności 324 188 gwiazd w deklinacji od -2° do $+90^\circ$ (Edward Schönfeld rozszerzył to do deklinacji -23°).

Systematycznym fotografowaniem nieba zajmował się również astronom francuski Paul Henry (1848—1905) ze swym bratem Prosperem Henrym (1849—1903). Opracowali oni szczegółowy atlas gwiazd położonych wzdłuż ekliptyki i do tej nadzwyczaj żmudnej pracy postanowili zastosować metodę fotograficzną. W tej zaś dziedzinie osiągnęli tak dobre wyniki, że kongres astronomów obradujący w roku 1887 w Paryżu (w tym czasie nie istniała jeszcze Międzynarodowa Unia Astronomiczna) podjął uchwałę, by wspólnym wysiłkiem wielu obserwatorów sporządzić metodę fotograficzną szczegółową mapę całego nieba. Miała ona zawierać kilkadziesiąt milionów gwiazd, z czego około trzech milionów miało być dokładnie skatalogowanych. Niestety, to olbrzymie przedsięwzięcie zostało tylko częściowo zrealizowane. Lecz opublikowane już mapy i katalogi są dużą pomocą w pracy astronomów, a jednocześnie najlepiej świadczą o przydatności fotografii w badaniach astronomicznych.
Największe jednak możliwości fotografii ujawniły się przy badaniu takich obiektów kosmicznych, jak mgławice i galaktyki. Świecą one bowiem na naszym niebie bardzo słabo, toteż dopiero klisza fotograficzna po wielogodzinnym naświetleniu w pełni pokazuje szczegóły ich budowy. Bardziej zresztą odległe mgławice i galaktyki nie są wizualnie widoczne nawet przez największe teleskopy, a o ich istnieniu dowiedzieliśmy się właśnie dzięki fotografii. Ona też pozwoliła dostrzec po­sługujące gwiazdy innych galaktyk i poznać delikatną strukturę Drogi Mlecznej.

Za początek fotografowania obiektów mgławicowych można uważać rok 1880, kiedy to znany astronom amerykański Henry Draper (1837—1882) otrzymał pierwsze zdjęcie Wielkiej Mgławicy Oriona. Wkrótce potem astronom angielski A. Anslie Common uzyskał szereg udanych fotografii innych obiektów mgławicowych. Ogólnie jednak astronomowie jakoś z dużym sceptycyzmem odnosili się do fotografii mgławic i nie wiadomo jak długo by to trwało, gdyby nie wybuchł spór o istnieniu mgławicy w Plejadach, który rozstrzygnęły dopiero zdjęcia wykonane w roku 1885 przez wspomnianych już braci Henry. Jedna z otrzymanych przez nich fotografii ukazywała bowiem wokół gwiazdy 23 Tau (Merope) taką właśnie mgławicę, jaką już przedtem rysowali najlepsi obserwatorzy. Fotografia ta pokazała również, że wszystkie gwiazdy tej gromady otoczone są materią mgławicową. Odtąd też najwięksi sceptycy zaczęli wierzyć w możliwości badania obiektów mgławicowych za pomocą kliszy fotograficznej.

Klisza fotograficzna zastąpiła także oko ludzkie w analizie widmowej gwiazd, mgławic i galaktyk. Pierwszy krok w tym kierunku zrobił astronom angielski William Huggins (1824—1910), który w roku 1876 skonstruował doskonal们y typ spektrografa. Użyte w nim pryzmaty wykonane zostały z islandzkiego szpatu, soczewki zaś z kwarcu, toteż znacznie lepiej prze­puszał on promienie fioletowe od spektrografu z optyką szklaną. Z jego pomocą Huggins w roku 1882 sfotografował widmo mgławicy w Orionie. Na zdjęciu tym było widać pięć jasnych linii, co potwierdzało wcześniejsze domysły, że mgławica ma gazowy charakter.

Z dużym wreszcie powodzeniem zastosowano fotografię do klasyfikacji widmowej gwiazd. Aby jednak uzyskać ogólny przegląd ich widm, należało znaleźć metodę jednoczesnego fotogra­fowania widm większej liczby gwiazd. Próby takie w latach 1879—1882 robił już Draper, lecz bez większego powodze-

Dziś fotografia jest powszechnie stosowana do obserwacji obiektów kosmicznych. Zwykle jednak teleskop zwierciadlny ma ograniczone pole widzenia i posiada za dużą aberrację sferyczną, skutkiem czego daje ostre obrazy jedynie w środkowych partiach kliszy. Ale i z tym problemem sobie poradzono, używając do fotografowania większych obszarów nieba szerokokątnego teleskopu, którego prototyp zbudował w roku 1932 optyk niemiecki Bernard Schmidt (1879—1935). Główne zwierciadło tego teleskopu ma kształt sferyczny, zniekształcenia zaś wywołane aberracją sferyczną neutralizuje umieszczona w środku jego krzywizny płyta korekcyjna o odpowiednim kształcie. Dzięki temu teleskop ma nie tylko duże pole widzenia, ale daje również wyraźne obrazy na całej kliszy.

Kolejny postęp w poznawaniu tajemnic Wszechświata przyoniósł barwna fotografia. Dostarczyła ona wiele interesujących informacji o mgławicach, gwiazdach i galaktykach, umożliwiła jeszcze wnikliwsze badania powierzchni planet i ich księżyków, okazała się niezastąpiona przy poznawaniu takich zjawisk, jak zaćmienia Słońca i Księżyca. Dzięki barwnej fotografii astronomowie mogą rozróżnić składniki pyłowe od gazowych w obłokach materii międzygwiazdowej i w ogonach komet, mogą przeprowadzać bezpośrednią analizę związku zachodzącego między obłokami gazu i pyłu a pobudzającymi je do świecenia gwiazdami gorącymi. Barwne zdjęcia zawierają wprost ogrom-
ną porcję bezcennych informacji, zgromadzonych przy tym na jednym obrazie. Dzięki nim uzyskujemy coraz więcej wiadomości o procesach zachodzących w mgławicach, gwiazdach i układach gwiazdowych.

Pierwsze informacje o barwach ciał niebieskich uzyskano po zastosowaniu do fotografii astronomicznej emulsji panchromatycznej. Pary zdjęć, z których jedna przedstawiała badany obiekt w barwie niebieskiej, druga zaś w barwie czerwonej, dostarczały astronomom dużo różnych wiadomości. Pozwalały one oceniać typy widmowe gwiazd, studiować strukturę obłoków materii międzygwiazdowej, badać dalekie galaktyki. Do tychczas najrozleglejszą akcją tego typu jest przegląd nieba północnego (do deklinacji −27°), który w latach pięćdziesiątych przeprowadzili astronomowie amerykańscy za pomocą kamery Schmidta o średnicy 122 cm w obserwatorium na Mt Palomar. Jej owocem jest atlas fotograficzny „Palomar Observatory Sky Survey”, zawierający 2000 kart z wycinkami nieba sfotografowanymi w świetle niebieskim i czerwonym.

Barwy ciał niebieskich określają wzajemny stosunek ilości promieniowania w pewnych obszarach widma. Tak się jedobiera, aby możliwie najlepiej opisywała rozkład energii w widmie badanego obiektu. W początkowym okresie, gdy barwna fotografia była jeszcze stosowana do obserwacji astronomicznych, ciała niebieskie fotografowano na emulsji czarno-białej za pomocą barwnych filtrów. W ten sposób można było stwierdzić, jak intensywnie promieniuje badany obiekt w wybranym obszarze widma. Najbardziej rozpowszechniony został trójbarwny fotometryczny system UBV, który pozwala określić stosunek jasności gwiazdy w nadfioletowej, niebieskiej i żółtej części widma. Zdjęcia takie mogą więc w niektórych przypadkach zastąpić analizę widmową.

Przez długi czas dużym problemem była wierność barw fotografowanego obiektu. W astronomii stosuje się bowiem niekiedy bardzo długie czasy ekspozycji, a to — jak wiadomo — powoduje obniżenie czułości każdej emulsji fotograficznej. A ponieważ emulsja barwna składa się zwykle z trzech warstw, w każdej z nich przejawia się mniejsze lub większe zniekształcenie danej barwy. Przekonano się jednak, że efekt ten można znacznie osłabić, jeżeli materiał negatywowy podczas ekspozycji zostanie odpowiednio ochłodzony (np. do temperatury −80°C). Można też uzyskać wierność barw przez zastosowanie odpowiednich filtrów korekcyjnych podczas fotografowania badanego obiektu. Wraz z nim fotografuje się wówczas obraz kon-
trolny, sprawdzając w ten sposób wierność barw. Jeżeli barwa obrazu kontrolnego odpowiada rzeczywistości, to i barwy fotografiowanych obiektu muszą być wiernie oddane. Tę właśnie metodę zastosowano do fotografowania powierzchni Marsa przez kamery „Vikingów”.

Bardzo często barwne zdjęcia ciał niebieskich uzyskuje się z nałożenia trzech lub więcej fotografii, z których każda obejmuje badany obiekt w innej części widma. Zdjęcia te nakładają się na siebie metodą elektroniczną (tak właśnie powstają barwne obrazy otrzymywane za pomocą sond kosmicznych) lub optyczną (jest to najczęściej stosowane w obserwatoriach). Pierwsza metoda jest oczywiście dużo dokładniejsza, ale wymaga użycia skomplikowanej i kosztownej aparatury. Jednak i te są całkowicie uzasadnione; barwna fotografia to przecież jeszcze jeden krok do pełniejszego poznania Wszechświata, do lepszego zrozumienia przebiegających w nim procesów fizyczno-chemicznych.

MAREK ZAWILSKI — Łódź

ZJAWISKA ZAĆMIENIOWE W POLSCE W NAJBLIŻSZYM SZEŚCIOLECJU (1980—1985)

1. Wstęp

Wzrastające wśród miłośników astronomii w ostatnich latach zainteresowanie obserwacjami zjawisk zaćmieniowych skłoniło autora do podjęcia obliczeń, mających na celu znalezienie odpowiedzi na pytanie, jakich zjawisk tego typu możemy oczekiwać w Polsce w najbliższych latach *

Prace obliczeniowe ograniczono do zaćmień Słońca i Księżyca oraz zakryć gwiazd i planet przez Księżyc. Efemerydy innych zjawisk (np. zakryć gwiazd przez planetoidy) bywają podawane dopiero na kilka miesięcy przed terminem a określanie ich widoczności na kilka lat naprzód nie jest obecnie możliwe.

2. Zaćmienia Słońca

W latach 1980—86 będzie można obserwować z terenu Polski cztery częściowe zaćmienia Słońca. Charakterystyczne jest, że trzy z nich nastąpią około wschodu lub zachodu Słońca, a tylko jedno podczas „jasnego dnia”.

Warunki wystąpienia zaćmień przedstawiono na rys. 1, na którym wyobrażono ruch cienia Księżyca względem północnej

półkuli Ziemi. Przedstawiona sytuacja dotyczy momentu, w którym w Polsce występuje maksymalna faza zaćmienia. Odwzorowanie kuli ziemskej odpowiada widokowi z dowolnego punktu (odległego od Ziemi) położonego na osi cienia.

Narys. 2 przedstawiony jest widok tarczy słonecznej podczas zaćmienia w układzie horyzontalnym.

Oprócz wspomnianych czterech zaćmień Słońca w dniu 4 grudnia 1983 r. dojdzie w rejonie Tatr do tzw. zaćmienia stykowego o 13h50m cse. Niestety, dokładność wykonanych obliczeń nie wystarcza, by definitywnie rozstrzygnąć, czy zaćmienie to obejmie choćby skrawek naszego kraju.

3. Zaćmienia Księżyca

W omawianym okresie 6 lat dojdzie do trzech zaćmień Księżyca, które będą widoczne z terenu naszego kraju (rys. 3). Ciekawe, że wszystkie będą całkowite i wszystkie będą widoczne w dobrych warunkach. Szczególnie interesujące będzie zaćmienie najbliższe, które nastąpi 9 stycznia 1982 r.

4. Zakrycia

Spośród zakryć gwiazd i planet przez Księżyc wybrano z konieczności zakrycia najciekawsze, dotyczące obiektów jasnych. W roku 1980 nastąpią kolejne zakrycia Aldebarana i Hiad przez Księżyc (rys. 4). Najlepiej widoczne będzie przejście 26

Rys. 4. Przejścia Księżyca na tle Hiad w Polsce w r. 1980. Dane dla Polski centralnej.

W r. 1983 nastąpią długo oczekiwane zakrycia Jowisza*. Dzięki niezwykle korzystnemu zbiegu okoliczności dojście aż do trzech doskonale widocznych zakryć tej planety, przy czym zakrycie 12 września 1983 r. można nazwać prawdziwą ozdobą całego okresu sześcioleta.
Na rys. 5 przedstawiono wszystkie ciekawsze zakrycia, z których pozostałe — oprócz wyżej omówionych — będą niestety b. trudno dostrzegalne.

Do ciekawszzych zakryć dojdzie podczas omówionych już zaćmień Księżyca. 9 stycznia 1982 r. ulegnie zakryciu gwiazda δ Bliźniąt (±3m,5), zaś 4 maja 1985 r. — gwiazda α Wagi (±2m,9). Niestety, oba zjawiska nastąpią na półkuli południowej, u nas dojdzie jedynie do bliskich złączeń.
Podobnie „blisko” będzie do zakryć w dniach 7 sierpnia 1980 r. ok. 3h cwe (Wenus) i 24 września 1981 r. ok. 6h cwe (Mars). W obu przypadkach dojście do b. bliskich koniunkcji (0°,2). Szczególnie w przypadku Wenus stworzy to efektowną konfigurację jasnej planety i sierpa Księżyca.
Na zakończenie warto wymienić dość rzadkie zjawisko zakrycia jasnej gwiazdy przez planetę. Mianowicie 17 listopada 1981 r. tarcza Wenus zakryje około 16h cwe gwiazdę α Strzelca (±2m,1), co będzie widoczne m. in. w Polsce.

* Wg obliczeń autora ostatnie zakrycie Jowisza (oprócz niewidocznegosc z powodu złej pogody w dn. 27 maja 1976 r.) nastąpiło na obszarze Polski 28 lutego 1944 roku.
5. Metodyka obliczeń

Zaśmienia Słońca

![Rys. 6. Elementy do obliczania częściowych zaśmienień Słońca.](image)

Elementy zaśmienień dla lat 1961–1978 wykryto systematyczne odchyłki danych Oppolzera względem danych rzeczywistych. Średnie poprawki do elementów Oppolzera wynoszą:

-0.0008 dla wartości u,
$+0.0028$ dla wartości γ.

(+- dla zaśmienień w węźle wstępującym orbity Księżyca).

Wg Meeusa przyjęto moment maksymalnego zbliżenia cienia do środka Ziemi. Moment ten jest określony do 1 s (niestety, w [4] nie podano innych elementów zaśmienienia).

Prędkość ruchu cienia względem Ziemi środka, v, oraz kąt nachylenia drogi cienia do równika Ziemi, σ, obliczono wg tablic Ahnerta.

Znając wartość γ, v i σ obliczono współrzędne prostokątne cienia w układzie Bessela (x, y) a następnie współrzędne obserwatora ξ, η, znajdując dalej moment początku, maksimum i końca zaśmienienia.
Za moment wschodu (zachodu) Słońca przyjęto moment styku dolnego (a nie jak zwykle górnego) brzegu tarczy Słońca z horyzontem. Jest to istotne, gdyż faza zaćmienia zmienia się w takim przypadku b. szybko. Dokładność uzyskiwanych wyników można oceniać na ± 1 do 2 minut w momentach i 0,01 w wielkości maksymalnej fazy.

Zaćmienia Księżyca

Dane do obliczeń przyjęto wg Ahnerta [2]. Dane te są dokładniejsze od danych Oppolzera. Obliczenia dotyczyły w tym przypadku znalezienia drogi Księżyca względem południka niebieskiego oraz momentów wschodu Księżyca w Polsce. Dodatkowo sprawdzono momenty początków i końców zaćmień częściowych i całkowitych, wynikające z wartości prędkości kątowej Księżyca. Te i powyższe obliczenia wykonano z tablic [1].

Zakrycia

Zagadnienie obliczania widoczności zakryć okazało się najtrudniejsze do rozwiązania. Nie były bowiem z górę znane momenty bliskich złączeń Księżyca z jasnymi gwiazdami i planety. Dla r. 1980 posłużono się danymi Nautical Almanac, natomiast dla pozostałych lat zaszła konieczność wykonania samodzielnym obliczeniami. Problem ten rozwiązano przez „przeszukiwanie” okresu lat 1981—85 rok po roku i znalezieniu bliskich złączeń. Posłużyło się przy tym tablicami Ahnerta, umożliwiającymi wyznaczenie pozycji planet z dokładnością ok. ± 0°,2 długości i ± 0°,2 w szerokości ekliptycznej oraz Księżyca odpowiednio ± 0°,1 i ± 0°,05. Następnie dla złączeń, przy których różnica szerokości ekliptycznych Księżyca i planety wynosiła ± 0°,2 do ± 1°,2 a oba ciała mogły być w Polsce widoczne nad horyzontem, obliczano dokładne efemerydy i sprawdzano możliwości zajścia zakrycia.

Spośród b. dużej liczby bliskich złączeń Księżyca z planetami jedynie w niewielu przypadkach okazało się, że dojdzie do zakryć. Często dojdzie do sytuacji, gdy ułamek stopnia lub go-
dzina czasu zabraknie, aby zakrycie mogło być u nas widoczne. Dokładność wykonanych obliczeń efemeryd pozwala na określenie momentów zakryć z błędem ok. ±0h,2.

Autor służy dokładniejszym informacjami na temat obliczenia omówionych zjawisk. Podanie pełnego algorytmu obliczeń ze zrozumiałych względów nie było w niniejszym artykule możliwe.

Literatura

KRONIKA

Układ podwójny w centrum mgławicy planetarnej NGC 3132

Mgławice planetarne stanowią — jak się dziś sądzi — jeden z końcowych etapów ewolucji gwiazd. Nie wypromieniowują własnej energii, lecz są do świecenia pobudzane przez znajdujące się w ich wnętrzach gorące, zdegenerowane jądra zamierających gwiazd. Dużą więc niespodzianką było, gdy w centrum mgławicy planetarnej NGC 3132 (gwiazdozbiór Pompy) zamiast gorącej gwiazdy klasy widmowej O lub gwiazdy typu Wolfa-Rayeta, odkryto chłodną gwiazdę klasy widmowej A0. Nie zgadzało się to z teorią, ponieważ efektywna temperatura tej gwiazdy jest stanowczo za niska, by wzbudzić promieniowanie otoczkę gazowej. W związku z tym Roberto H. Méndez wystąpił z hipotezą, że w centrum mgławicy NGC 3132 musi znajdować się gwiazda podwójna (1). Jednym składnikiem tego układu winna być właśnie obserwowana gwiazda chłodna, drugim zaś niewidoczna gwiazda gorąca. Pogląd ten został w pełni potwierdzony przez Luboša Kohoutka i S. Laustsena, którzy na podstawie obserwacji wykonanej 3,6 metrowym teleskopem Europejskiego Obserwatorium Południowego (La Silla, Chile) stwierdzili, iż znajdująca się w centrum mgławicy planetarnej NGC 3132 chłodna gwiazda ma istotnie niewielkiego, bardzo gorącego towarzysza (2). Jego efektywna temperatura wynosi bowiem aż 100 000° K, a promień nie przekraczający 0,035 promienia Słońca.

A zatem faktycznym jądrem mgławicy planetarnej NGC 3132 jest — zgodnie z teorią — bardzo gorąca, zdegenerowana gwiazda. To ona właśnie pobudza do świecenia rozprężającą się wokół układu otoczkę gazową.

HD 93250 — rekordzistka wśród masywnych gwiazd

Do niedawna sądzono, iż masy młodych gwiazd klasy widmowej O nie mogą być większe niż 100 mas Słońca. Pogląd ten mocno ostatnio podważał Rolf-Peter Kudritzki z Instytutu Fizyki Teoretycznej w Kiel (RFN). W widmie gwiazdy HD 93250 klasy widmowej O3, uzyskanym w marcu 1978 roku za pomocą 1,52 metrowego teleskopu Europejskiego Obserwatorium Południowego (*European Southern Observatory*), odkrył słabe linie neutralnego helu 4471 Å i 5876 Å. Pozwoliło mu to dokładnie określić wysokość efektywnej temperatury wspomnianej gwiazdy (*T*_{eff} = 52 500° K) i jej siłę ciążenia (*log g* = 3,95). Na podstawie zaś wyższych danych wywnioskował, że gwiazda HD 93250 ma masę około 120 razy większą od masy Słońca. Byłaby to więc prawdziwa rekordzistka wśród masywnych gwiazd ciągu głównego. Należy do młodej grupy otwartej, oddalonej od nas o 3000 ± 400 parseków (gwiazdozbiór Kila).

S. R. BRZOSTKIEWICZ

Klasyfikacja galaktyk

Maksymalne prędkości obrotowe (**V**_{max}) galaktyk typu S 0 są znacznie większe niż **V**_{max} galaktyk eliptycznych, a jednocześnie porównywalne z **V**_{max} galaktyk spiralnych. Zestawienie tego faktu z innymi (np. rzeczywistym spłaszczeniem, charakterystykami fotometrycznymi, stosunkiem masy do jasności, zawartością wodoru neutralnego) sugeruje, że rozpatrując morfologiczną klasyfikację galaktyk Hubble'a należy wydzielić dwie główne klasy. Z jednej strony istnieją systemy gwiazdowe z jedną tylko, sferoidalną komponentą — galaktyki eliptyczne, z drugiej zaś systemy dwuskładnikowe (dysk i sfera) — galaktyki typu S 0 i spiralne (być może także nieregularne galaktyki typu M 0). Wynika z tego, że galaktyki typu S 0 nie mogą być dłużej uważane za przejściowy typ morfologiczny.

ZBIGNIEW PAPROTY

Bolid tunguski

Zakładając, że ciało — które znane jest jako bolid tunguski — miało prędkość 20—60 km/s, gęstość 0,002—0,01 g/cm³, energię kinetyczną rzędu 10² ergów i składało się ze śniegu o składzie CO₂, H₂O, CH₄ i NH₃, Ch. Park (1) zanalizował możliwość powstawania tlenku azotu NO w śladzie pozostawionym przez bolid, w drodze reakcji wywołanej falą uderzeniową. Obliczono, że na wysokości około 50 km powinno było powstać około 19 milionów ton tlenku azotu. Reakcja NO z ozonom zaważyła w atmosferze prowadziła do tworzenia się NO₂ czemu towarzyszyła chemoluminescencja. Tłumaczyłyby to jasne noce obserwowane w Europie po katastrofie z 1908 roku. Pojawienie się dużych ilości NO₂ wywołało jednocześnie mogło zauważyte wtedy zmniejszenie przeprowodności atmosfery. Pewna ilość tlenków azotu dostała się z resztkami bolidu na powierzchnię Ziemi wpływając przez wzbogacenie gleby w azot na przyspieszenie wzrostu drzew w miejscu katastrofy, obserwowane po 1908 roku.

Wg ESO Messenger, 1978, No 15, 26.
Proponowany przez wielu autorów model jądra kometarnego niedostateczniej tłumaczy szybkie wyparowanie tak dużej masy, nie rzucą też światła na przyczynę finalnej eksplozji. Z tych powodów zaproponowano założyć, że bolid tunguski miał strukturę gąbczastą, co zdecydowanie mogłoby zwiększyć współczynnik wymiany ciepła z otoczeniem, a zatem przyspieszyć procesy ablacyjne. Istnienie szczelin, kawern i porów może być w takim przypadku interpretowane jako powiększenie powierzchni oddziaływania materiału bolidu z atmosferą. Jeśli powierzchnię ablacji powiększyć dwa razy, wtedy okazuje się, że na wysokości około 16 kilometrów następuje gwałtowna dysypacja masy, energii i pędkości, co można utożsamiać z eksplozją termiczną. Taki rezultat obliczeń nie wymaga przy tym innych, niż ogólnie przyjęte, założeń dotyczących parametrów początkowych opisujących bolid tunguski.

Czego nie wiemy o Wenus?

Jakie rzeki płynęły na Marsie?

Y. L. Young i Y. P. Pinto (1) zanalizowali implikacje zaproponowanego przez Sagana i Pollacka modelu pierwotnej atmosfery Marsa, według którego zawierała ona metan, lecz pozbawiona była amoniaku. Po rozpatrzeniu reakcji aeronomicznych zachodzących z udziałem metanu i in-
nych węglowodorów i obliczeniu równowagowych stężeń tych substancji w założonych warunkach ciśnienia (100 mbar), temperatury powierzchni (220 K) i gradientu adiabatycznego (1,9°K/km), wysunięto przypuszczenie, że w krótkim okresie historii Marsa, trwającym około 10—100 milionów lat, na jego powierzchni mogły płynąć rzeki ciekłych węglowodorów. W późniejszym czasie składające się na nie związki uległy rozłożeniu na wodor, który opuścił atmosferę, z równoczesnym utworzeniem CO₂ i CO. Sprawdzenie tej hipotezy byłoby możliwe po określeniu stosunku zawartości deuteru do wodoru w atmosferze i wodzie marsyjskiej. Inną hipotezę, wiążącą formowanie kanionów na Marsie z istnieniem podpowierzchniowych rezerwuarów powstających przy topieniu lodów (wywołanym ciepłem wulkanicznym lub silnymi uderzeniami meteorytów), wysunął niedawno N. A. Barricelli (2).

ZBIGNIEW PAPROTNY

Pochodzenie Układu Słonecznego

A. J. R. Prentice, rozwijając teorię powstania Układu Słonecznego zakładającą istnienie naddźwiękowej konwencji turbulentnej w mgławicy protosłonecznej, proponuje następujące etapy jej ewolucji: kondensacja lodów H₂O, NH₃, CI₄, a następnie H₂ z wtrąceniami atomów He, migracja zestalonych cząstek ku środowisku mgławicy z równoczesnym przekazaniem 99%/o momentu pędu gazowi w glebi mgławicy do komórki centralnej (cząstek stałych i gazu) do rozmiarów orbity Neptuna, powstanie małego i gęstego jądra kwazi-gwiezdnego zawierającego 3—4%/o masy mgławicy, postępująca kontrakcja tego jądra, czemu towarzyszyłyby wydzielanie energii utrzymującej nieprzezroczystą otoczku jądra w stanie konwencji turbinowej. W pracy proponuje się model silnej turbulencji, zgodnie z którym od obszarów równikowych otoczki periodycznie oddzielają się pierścienie (podobne do tych z koncepcji Laplace’a), co sprzyja dalszej kontrakcji protosłońca. Według Prentice’a w każdym pierścieniu powstać by miała w rezultacie jedna planeta.

ZBIGNIEW PAPROTNY

Pochodzenie atmosfer planetarnych

Zgodnie z przyjętymi obecnie teoriami atmosfery planet jowiszowych powstały równocześnie z nimi samymi, drogą dopowierzchniowego kolałpu grawitacyjnego gazów zawartych w pierwotnej mgławicy protoplanetarnej. Z kolei atmosfery planet grupy ziemskiej są efektem wydzielania związków lotnych z wnętrza tych ciał. Zróżnicowanie atmosfery w tej grupie planet jest najprawdopodobniej bezpośredni skutkiem różnic w ich odległościach od Słońca. Odległości heliocentryczne określają nie tylko skład chemiczny jako efekt wydzielania substancji lotnych ale również wyjściową temperaturę planet, odgrywającą zasadniczą rolę przy dalszej ewolucji atmosfery. Z tego powodu wokół Wenus powstała potężna atmosfera zawierająca głównie CO₂, podczas gdy Mars posiada względnie rzadką atmosferę CO₂ (chociaż jest ona najpewniej tylko częścią wydzielonych związków lotnych). Dzięki sprzyjającej tem-
peraturze na Ziemi powstać mogły mogły oceanie, które z kolei zapobiegały nadmiernemu nagromadzeniu CO₂ w atmosferze, wiązając go w kwas węglowy, i uczyniły azot dominującą składową atmosfery. Te i inne okoliczności doprowadziły do powstania życia na Ziemi a w dalszej kolejności do powstania atmosfery utleniającej, poprzez produkcję tlenu w procesach fotosyntezy biologicznej.

ZBIGNIEW PAPROTNY

Orbity i pochodzenie księżyców Marsa

ZBIGNIEW PAPROTNY

Natura i pochodzenie komet

W pracy F. L. Whipple'a dyskutowane jest znaczenie rotacji jąder komet i właściwości tworzących je lodów dla zrozumienia problemu pochodzenia komet. Eksperymenty laboratoryjne z amorficznym lodem wody, zawierającym znaczne ilościowo wtrącenia dwutlenku węgla, amoniu i azotu potwierdzają, że lody tworzące jądra komet kondensowały w bardzo niskich temperaturach, a nadto że mają charakter amorficzny lub zawierają wolne rodniki. Przy słabym nawet nagrzaniu lody przechodzą do innego stanu fazowego, czemu towarzyszy wydzielenie energii. Tym właśnie procesem można wyjaśnić aktywność komet na dużych odległościach od Słońca. Wystarczając do dokładnie wyznaczony
okres rotacji jądra dużej komety okresowej Schwassmanni — Wachmanna 1 (5 dni) sugeruje, że prędkości względne pod koniec akrecji komet były małe (rzędu 0,5 — 30 m/s), obszar w którym akrecja zachodziła nie doznawał zakłóceń graviacyjnych, oraz że brak tam było ciała o rozmiarach planetarnych. Czas akrecji komet ocenia się na około miliona lat. Powstały one w dużej odległości od Słońca, w zewnętrznych częściach systemu planetarnego lub nawet dalej, z materii międzygwiazdowej. Amorficzne lody składające się na jądra komet powinny były tworzyć się z kondensatów o małej gęstości, przy temperaturach niższych od kilkudziesięciu kelwinów.

ZBIGNIEW PAPROTNY

Gdzie i kiedy najczęściej odkrywane są komety?

Ze sprawozdań odkrywców nowych komet wynika, że są one znajdywane przede wszystkim w godzinach wieczornych na zachodnim niebie i w godzinach porannych na wschodnim niebie (w tzw. „sferach Everharta”). Spowodowane jest to głównie tym, że komety największą jasność mają w peryhelium swej orbity. Jeżeli jednak ich odległości od Słońca są wtedy bardzo małe (w przypadku jasnych komet jest to w zasadzie reguła), a płaszczyzny orbit słabo nachylone względem płaszczyzny ekliptyki, wówczas w okresie przejścia przez peryhelium nie można ich w ogóle dostrzec na niebie. Do obserwacji są bowiem dostępne jedynie przedtem (na wieczornym niebie) lub potem (na porannym niebie). Ciekawe badania na ten temat przeprowadził ostatnio S. N. Biełajew z Leningradu, wykorzystując materiał opublikowany w roku

<table>
<thead>
<tr>
<th>Miesiąc</th>
<th>Gwiazdozbiór</th>
</tr>
</thead>
<tbody>
<tr>
<td>Styczeń</td>
<td>Byk, Herkules, Erydan</td>
</tr>
<tr>
<td></td>
<td>Lew, Cefeusz</td>
</tr>
<tr>
<td>Luty</td>
<td>Panna, Lew, Pegaz, Waga</td>
</tr>
<tr>
<td>Marzec</td>
<td>Pegaz, Andromeda, Perseusz, Kasjopea</td>
</tr>
<tr>
<td>Kwiecień</td>
<td>Pegaz, Ryby</td>
</tr>
<tr>
<td>Maj</td>
<td>Perseusz, Ryby, Woźnica, Żyrafa, Wielka Niedźwiedź</td>
</tr>
<tr>
<td>Czerwiec</td>
<td>Żyrafa, Orzeł, Herkules, Woźnica, Wieloryb, Byk, Mała Niedźwiedź</td>
</tr>
<tr>
<td>Lipiec</td>
<td>Wodnik, Wielka Niedźwiedź, Żyrafa, Woźnica, Ryś, Herbules, Byk, Kasjopea</td>
</tr>
<tr>
<td>Sierpień</td>
<td>Ryś, Lew, Żyrafa, Wężownik, Wodnik, Hydra, Wielka Niedźwiedź, Bliźniąta</td>
</tr>
<tr>
<td>Wrzesień</td>
<td>Lew, Smok, Żyrafa, Wieloryb, Byk, Wężownik, Wodnik, Wolarz</td>
</tr>
<tr>
<td>Październik</td>
<td>Panna, Sekstans, Pegaz, Herkules, Erydan, Lew, Byk, Wieloryb, Smok</td>
</tr>
<tr>
<td>Listopad</td>
<td>Panna, Byk, Wieloryb, Herkules</td>
</tr>
<tr>
<td>Grudzień</td>
<td></td>
</tr>
</tbody>
</table>
1958 przez S. K. Wsiechswiatskiego w znanym dziele *Fizyczeskije cha-racteristyki komet* i jego późniejszych uzupełnieniach (dzieło zawiera dane o przeszło 400 kometach). Zbadał mianowicie położenia nowood- krytych komet na niebie w poszczególnych miesiącach roku i wyniki dokonanej analizy przedstawił w załączonej tabeli. Gwiazdozbiory są w niej uporządkowane według liczebności nowoodkrytych komet (tiustym drukiem wyróżniono gwiazdozbiory, w których odkrycia były najlicz- niesze).

Tabela opracowana przez Bielajewa może oddać duże usługi obserwatorom zajmującym się poszukiwaniem nowych komet. Wskazuje bowiem te gwiazdozbiory i miesiące, w których prawdopodobieństwo odkrycia jest największe.

Wg *Komietnyj cirkuljar*, 1978, No 237, 3.

S. R. BRZOSTKIEWICZ

Promieniowanie radiowe Jowisza

ZBIGNIEW PA PROTNY

Gdzież Oni są?

Jesli trendy rozwojowe cechujące cywilizację ziemską, ekstrapolowane na długie okresy czasu, uznać za normę ewolucyjną ewentualnych psy- chozoików galaktycznych, wtedy uzasadnionym stanie się wyrażane wie- lekroć zdziwienie, że jeszcze Ich tutaj nie ma czy nie było (1), względ- nie, że nie obserwujemy efektów Ich prac nad przebudową Galaktyki (2). Wystarczyłoby przecież kilka milionów lat, by opanować ją bez reszty. Ow fenomen, znany pod nazwą *Silentium Universi*, tłumaczy- ono był na różne sposoby. Kolejną listę możliwych przyczyn przedstawił nie- dawno Sebastian von Hoerner (3). Milczenie Wszechświata może według niego być objaśnione wyjątkową naturą ziemskiej formy rozumu, nies- typowością ziemskiej cywilizacji technicznej a dokładniej — cechującej ją tendencji do nieograniczonej (poki co) ekspansji, dyfuzyjnym charakte- rem ekspansji w Kosmos, przy którym rozmiany opanowanej strefy rosną jak pierwiastek kwadratowy czasu, w końcu obojętnością najstarszych cywilizacji galaktycznych, które są jej prawdziwymi go- spodarzami. Nieobecność Innych lub pozostawionych przez Nich śladów w Układzie Słonecznym może oznaczać, że w ogóle nie ma Ich w Ga-
laktyce. Analizując tę możliwość M. D. Papagiannis doszedł do wniosku, że jeśli inna cywilizacja dotarła do okolic Słońca, to osiedliła się w pasie planetoid (!). Zaskakujące w tej sytuacji milczenie tamtejszych kolonistów tłumaczy żywionymi przez Nich obawami o los cywilizacji ziemskiej, której burzliwy rozwój, utrudniający podjęcie decyzji o kontakcie, mogą śledzić sami pozostając niezauważonymi (4).

ZBIGNIEW PAPROTNY

Prawda o próbkach gruntu księżycowego

(List do redakcji). W artykule „Losy próbek gruntu księżycowego dostarczonego przez amerykańskie statki Apollo”, zamieszczonym w Uranii z marca 1979 r., wylicza Pan, kto otrzymał i ile tych próbek, a nie wspomniał Pan, że kościół w Nowej Hucie otrzymał też dużą próbkę, która jest wbudowana w tabernakulum (próbka o średnicy około 1 cm). Bardzo bym prosił o poinformowanie o tym Czytelników miesięcznika Urania, aby prawdzie stało się zadość.

EUGENIUSZ SKRZAT

OBSERWACJE

Komunikat Centralnej Sekcji Obserwatorów Słońca nr 7/79

W lipcu 1979 r. aktywność plamotwórcza Słońca była wysoka i utrzymywała się na ogół na poziomie miesiąca poprzedniego. Średnia miesięczna względna liczba plamowa (month mean Wolf Number) za miesiąc lipiec 1979 r. R = 153,1

Bardzo wysoka aktywność w pierwszej dekadzie miesiąca, gdy liczby plamowe przekroczyły kilkakrotnie wartość R = 200, spadła w środku miesiąca a następnie w drugiej połowie miesiąca nieco wzrosła i utrzymywała się w granicach około R = 150.

W lipcu na widocznej tarczy Słońca zaobserwowano powstanie 41 nowych grup plam. Z nich 10 grup średniej wielkości, pozostałe grupy były niewielkie. Dlatego też i średnia miesięczna powierzchnia plam była prawie o połowę mniejsza niż w czerwcu. Szacunkowa średnia miesięczna powierzchnia plam (month mean Area of Sunspots) za miesiąc lipiec 1979 r. S = 1356 • 10^{-8} p.p.s.

Wskaźnik zmienności plamowej cyklu (Solar Spot Variability Index) do stycznia 1979 r. — Z = 13,2.

Średnia miesięczna konsekwutynna liczba plamowa z 13 miesięcy za styczeń 1979 — R = 122,7.

Dziennie liczby plamowe (daily Wolf Number) za VII 1979:

Wykorzystano 229 obserwacji 22 obserwatorów w 31 dniach obserwacyjnych. Obserwatorzy:

Dąbrowa Górnicza, 7 sierpnia 1979 r.

WACLAW SZYMAŃSKI

Raport VII 1979 o radiowym promieniowaniu Słońca

Średnie strumienie miesiąca: 14,5 (127 MHz, 31 dni obserwacji) i 148,7 su (2800 MHz, 20 dni). Średnia miesięczna wskaźników zmienności — 0,26.

Na częstotliwości 127 MHz stwierdzono wystąpienie 23 zjawisk niezwykłych (w tym 11 burz szumowych). Dnia 11 VII o godz. 1512,4 UT w momencie maksimum wybuchu 27 RF strumień wynosił 480 su, była to najwyższa wartość w tym miesiącu.

W paśmie 2800 MHz zarejestrowano 4 zjawiska w dniach 4 i 30 VII. Najwyższy poziom (256 su) osiągnął wybuch typu 4S/F dnia 30 VII o godz. 1038 UT.

Toruń, 9 sierpnia 1979 r.

GRAŻYNA GAWROŃSKA, HENRYK WEĽNOWSKI

Miłośnicy Astronomii w Paderborn

W Paderborn (Republika Federalna Niemiec) istnieje dobrze zorganizowane Stowarzyszenie Astronomów Amatorów Astronomische Arbeitsgemeinschaft e.V. Paderborn, zrzeszające kilkudziesięciu astronomów niezawodowych. Stowarzyszenie wydaje własny miesięcznik formatu Uranii — Saturn.

Oficjalnym wydawcą i redaktorem „Saturna” jest p. Reinhard Węchoczek. Szczupłe ramy pisma są bogato wypełnione aktualną i atrakcyjną treścią.
Członkowie Astronomische Arbeitsgemeinschaft zajmują się m. in. również obserwacjami plam słonecznych. Obliczane są tu własne liczby plamowe, w nieco innym ujęciu, tzw. liczby plamowe z Paderborn. Liczby te odzwierciedlają nieco inną cechę plamotwórczej aktywności Słońca.

WAČLAW ŚZYMAŃSKI

Efmerydy zakryć gwiazd przez Księżyca dla Polski

Poczynając od 1980 roku efemerydy zakryć gwiazd przez Księżyca będą podawane w zmienionej, rozszerzonej formie, w postaci dwóch tabel.

Tab. 1 zawiera dane ogólne. Zachowano numerację dotychczasową, wprowadzoną przed 50 laty do „Rocznika Krakowskiego”, prócz tego podawany jest numer gwiazdy wg „Zodiacal Catalogue”. Dla zorientowania się co do warunków obserwacji podaje się dodatkowo azymut i wysokość Księżyca oraz elongację od Słońca, co odpowiada faze Księżyca (kąt $E_k = 0^\circ$ odpowiada nowiu, $E_k = 90^\circ$ pierwszej kwadrze itd.).

Rozszerzono również liczbę miast dla których podawane są momenty zjawisk do dziesięciu (tab. 2). W ten sposób objęto efemerydami praktycznie cały obszar Polski.

Wszystkie dane pochodzą ze zbioru efemeryd opracowanego przez Nautical Almanac Office (Anglia). W tychże materiałach podano momenty zjawisk dla Poznania, Warszawy i Krakowa oraz poprawki do obliczania momentów dla miejscowości niezbyt odległych od tych miast.

W przypadkach zakryć zbliżonych do brzegowych przeliczenia te nie były możliwe. W związku z tym podano jedynie szacunkowo, dla których miast zakrycia są spodziewane. Bliższe dane dla takich przypadków będą w „Uranii” zamieszczane oddzielnie.

Z uwagi na to, że wartości kątów pozycyjnych, azymutu i wysokości Księżyca wystarczy znać z dokładnością do kilku stopni, zrezygnowano z podawania wartości dla każdego miasta.

Znak „—” w tab. 2 oznacza, że zjawisko dla danego miasta nie zajęzie, lub nie będzie widoczne z powodu jasnego nieba, bądź niespodziewanego położenia Księżyca nad horyzontem. Natomiast gwiazdka (*) oznacza, że zakrycie jest możliwe.

Dane dla trzech zakryć w styczniu 1980 r. (nr 5875, 5876 i 5877 w nocy 9/10 stycznia o 25h), były już wymienione w numerze listopadowym „Uranii” według dawnego układu.

Autorami zestawień efemeryd są: Marek Zawilski (Łódź) i Zbigniew Rzepka (Poznań).

MAREK ZAWILSKI, ZBIGNIEW RZEPKA
Zakrycia gwiazd przez Księżyc w Polsce w I kwartale 1980 r.

Tab. 1. Dane ogólne: miesiąc, dzień, godzina, numer kolejny, nazwa gwiazdy i numer wg katalogu ZC, jasność, zjawisko, kąty pozycyjne, azymut i wysokość Księżyca, elongacja od Słońca.

<table>
<thead>
<tr>
<th>UT</th>
<th>Nr</th>
<th>Gwiazda</th>
<th>ZC</th>
<th>jasn. zj.</th>
<th>A<sub>p</sub></th>
<th>A<sub>z</sub></th>
<th>A</th>
<th>H</th>
<th>Ek</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>10</td>
<td>5875</td>
<td>46 Vir 1869</td>
<td>6,1 p</td>
<td>200° 225°</td>
<td>-50° 20°</td>
<td>266°</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5876</td>
<td>46 Vir 1869</td>
<td>6,1 k</td>
<td>225 250</td>
<td>-45 25</td>
<td>266</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5877</td>
<td>48 Vir 1875</td>
<td>6,5 p</td>
<td>260 260</td>
<td>0 35</td>
<td>267</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5878</td>
<td>Wenus 4002</td>
<td>-3,5 p</td>
<td>85 95</td>
<td>-20 25</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5879</td>
<td>Wenus 4002</td>
<td>-3,5 k</td>
<td>235 235</td>
<td>0 30</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5880</td>
<td>64 Aqr 3324</td>
<td>7,2 p</td>
<td>70 46</td>
<td>+45 20</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5881</td>
<td>14 Cet 76</td>
<td>5,9 p</td>
<td>105 75</td>
<td>+55 25</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5882</td>
<td>8B Tau 491</td>
<td>7,4 p</td>
<td>110 75</td>
<td>+65 30</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5883</td>
<td>Westa 4014</td>
<td>6,2 p</td>
<td>95 60</td>
<td>+75 25</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5884</td>
<td>+12 477 498</td>
<td>6,2 p</td>
<td>105 65</td>
<td>+95 15</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5885</td>
<td>179B Tau 608</td>
<td>6,0* p</td>
<td>20 50</td>
<td>-50 45</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5886</td>
<td>48 Tau 626</td>
<td>6,4 p</td>
<td>90 65</td>
<td>+40 45</td>
<td>119</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5887</td>
<td>γ Tau 635</td>
<td>3,9 p</td>
<td>75 40</td>
<td>+75 30</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>5</td>
<td>5888</td>
<td>γ Vir 1821</td>
<td>2,9* p</td>
<td>145 180</td>
<td>-65 15</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>5889</td>
<td>γ Vir 1821</td>
<td>2,9* k</td>
<td>265 295</td>
<td>-55 25</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5890</td>
<td>-0 2603 1825</td>
<td>6,1 k</td>
<td>285 305</td>
<td>-35 30</td>
<td>235</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>5891</td>
<td>33 Cet 170</td>
<td>6,2 p</td>
<td>110 75</td>
<td>+55 20</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>5892</td>
<td>+ 6 324 306</td>
<td>6,9 p</td>
<td>100 70</td>
<td>+55 30</td>
<td>61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5893</td>
<td>+10 401 444</td>
<td>6,2 p</td>
<td>150 125</td>
<td>+40 45</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5894</td>
<td>+10 401 444</td>
<td>6,2 k</td>
<td>170 145</td>
<td>+40 40</td>
<td>74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5895</td>
<td>+11 434 453</td>
<td>7,3 p</td>
<td>45 10</td>
<td>+80 20</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5896</td>
<td>318B Tau 741</td>
<td>5,7 p</td>
<td>40 5</td>
<td>+70 35</td>
<td>101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5897</td>
<td>74B Gem 1040</td>
<td>6,2 p</td>
<td>170 135</td>
<td>+60 40</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5898</td>
<td>74B Gem 1040</td>
<td>6,2 k</td>
<td>200 165</td>
<td>+65 40</td>
<td>126</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5899</td>
<td>74 Gem 1158</td>
<td>5,2 p</td>
<td>120 110</td>
<td>+20 55</td>
<td>137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>7</td>
<td>5900</td>
<td>γ Lib 2223</td>
<td>4,0* k</td>
<td>235 265</td>
<td>-50 10</td>
<td>248</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>5901</td>
<td>NU Psc 249</td>
<td>4,7 p</td>
<td>25 350</td>
<td>+80 15</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5902</td>
<td>275B Tau 685</td>
<td>6,5 p</td>
<td>60 30</td>
<td>+50 45</td>
<td>69</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5903</td>
<td>α Tau 685</td>
<td>1,1* p</td>
<td>30 355</td>
<td>+70 35</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>5904</td>
<td>α Tau 692</td>
<td>1,1* k</td>
<td>320 280</td>
<td>+80 30</td>
<td>70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>5905</td>
<td>+18 873 829</td>
<td>7,0 p</td>
<td>20 250</td>
<td>+55 45</td>
<td>82</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>5906</td>
<td>+18 1214 985</td>
<td>6,9* p</td>
<td>55 45</td>
<td>+20 55</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5907</td>
<td>143B Gem 1114</td>
<td>6,8 p</td>
<td>70 50</td>
<td>+35 50</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>5908</td>
<td>+18 1610 1124</td>
<td>6,9* p</td>
<td>75 40</td>
<td>+65 40</td>
<td>107</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>5909</td>
<td>+16 1704 1258</td>
<td>6,7 p</td>
<td>160 140</td>
<td>+90 20</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>5910</td>
<td>+15 1984 1360</td>
<td>7,5 p</td>
<td>50 30</td>
<td>+35 50</td>
<td>130</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* — gwiazda podwójna,
p i k — początek wzgl. koniec zjawiska.
Kąty pozycyjne (A_p — od bieguna, A_z — od zenitu), jak również azymut i wysokość Księżyca (A, II) odnoszą się do centrum Polski.
Ek — elongacja Księżyca od Słońca.
Tabela 2. Moment zjawiska (minuty) dla Szczecina (Sz), Poznania (P), Wrocławia (Wr), Torunia (T), Gdańska (G), Łodzi (Ł), Krakowa (K), Warszawy (Wa), Rzeszowa (R), i Białegostoku (B). Czas uniwersalny UT.

<table>
<thead>
<tr>
<th>Nr</th>
<th>Sz</th>
<th>P</th>
<th>Wr</th>
<th>T</th>
<th>G</th>
<th>Ł</th>
<th>K</th>
<th>Wa</th>
<th>R</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>5875</td>
<td>*</td>
<td>32,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5876</td>
<td>a</td>
<td>49,6</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5877</td>
<td>26,9</td>
<td>31,2</td>
<td>30,9</td>
<td>34,7</td>
<td>35,0</td>
<td>36,0</td>
<td>36,6</td>
<td>38,1</td>
<td>41,1</td>
<td>43,1</td>
</tr>
<tr>
<td>5878</td>
<td>55,0</td>
<td>57,5</td>
<td>56,6</td>
<td>60,6</td>
<td>61,7</td>
<td>60,9</td>
<td>60,3</td>
<td>63,6</td>
<td>63,6</td>
<td>67,5</td>
</tr>
<tr>
<td>5879</td>
<td>12,8</td>
<td>15,1</td>
<td>14,4</td>
<td>17,6</td>
<td>18,8</td>
<td>18,0</td>
<td>17,4</td>
<td>20,4</td>
<td>20,1</td>
<td>23,7</td>
</tr>
<tr>
<td>5880</td>
<td>07,2</td>
<td>09,9</td>
<td>10,8</td>
<td>11,1</td>
<td>10,2</td>
<td>12,7</td>
<td>14,4</td>
<td>13,6</td>
<td>16,2</td>
<td>14,6</td>
</tr>
<tr>
<td>5881</td>
<td>25,8</td>
<td>30,2</td>
<td>32,7</td>
<td>31,0</td>
<td>28,3</td>
<td>34,1</td>
<td>38,5</td>
<td>34,8</td>
<td>40,8</td>
<td>35,1</td>
</tr>
<tr>
<td>5882</td>
<td>19,0</td>
<td>23,4</td>
<td>26,0</td>
<td>23,9</td>
<td>21,1</td>
<td>27,2</td>
<td>31,6</td>
<td>27,5</td>
<td>33,4</td>
<td>27,3</td>
</tr>
<tr>
<td>5883</td>
<td>59,9</td>
<td>62,9</td>
<td>65,0</td>
<td>62,9</td>
<td>60,9</td>
<td>65,5</td>
<td>68,7</td>
<td>65,6</td>
<td>40,0</td>
<td>65,2</td>
</tr>
<tr>
<td>5884</td>
<td>33,4</td>
<td>35,6</td>
<td>38,0</td>
<td>34,6</td>
<td>22,1</td>
<td>36,8</td>
<td>40,2</td>
<td>36,0</td>
<td>69,7</td>
<td>34,3</td>
</tr>
<tr>
<td>5885</td>
<td>11,8</td>
<td>08,6</td>
<td>04,0</td>
<td>11,2</td>
<td>15,4</td>
<td>07,0</td>
<td>02,2</td>
<td>09,2</td>
<td>03,2</td>
<td>12,8</td>
</tr>
<tr>
<td>5886</td>
<td>25,7</td>
<td>29,7</td>
<td>30,8</td>
<td>31,5</td>
<td>30,5</td>
<td>33,7</td>
<td>36,1</td>
<td>35,3</td>
<td>39,0</td>
<td>37,7</td>
</tr>
<tr>
<td>5887</td>
<td>41,8</td>
<td>44,5</td>
<td>45,9</td>
<td>45,1</td>
<td>43,9</td>
<td>47,0</td>
<td>49,2</td>
<td>47,5</td>
<td>50,6</td>
<td>47,9</td>
</tr>
<tr>
<td>5888</td>
<td>10,6</td>
<td>11,8</td>
<td>12,1</td>
<td>12,4</td>
<td>12,1</td>
<td>13,0</td>
<td>13,9</td>
<td>16,1</td>
<td>14,7</td>
<td>14,2</td>
</tr>
<tr>
<td>5889</td>
<td>11,1</td>
<td>11,7</td>
<td>09,4</td>
<td>14,6</td>
<td>17,1</td>
<td>13,4</td>
<td>10,7</td>
<td>13,5</td>
<td>13,4</td>
<td>20,1</td>
</tr>
<tr>
<td>5890</td>
<td>30,7</td>
<td>33,1</td>
<td>32,5</td>
<td>35,7</td>
<td>36,2</td>
<td>36,2</td>
<td>36,0</td>
<td>61,6</td>
<td>39,1</td>
<td>41,8</td>
</tr>
<tr>
<td>5891</td>
<td>51,4</td>
<td>58,2</td>
<td>61,1</td>
<td>58,2</td>
<td>55,1</td>
<td>61,6</td>
<td>66,6</td>
<td>38,5</td>
<td>68,2</td>
<td>60,9</td>
</tr>
<tr>
<td>5892</td>
<td>34,6</td>
<td>38,7</td>
<td>40,8</td>
<td>39,5</td>
<td>37,6</td>
<td>42,6</td>
<td>46,3</td>
<td>43,4</td>
<td>48,6</td>
<td>44,0</td>
</tr>
<tr>
<td>5893</td>
<td>*</td>
<td>37,4</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5894</td>
<td>*</td>
<td>50,0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5895</td>
<td>25,0</td>
<td>26,5</td>
<td>26,7</td>
<td>27,5</td>
<td>27,3</td>
<td>27,9</td>
<td>28,7</td>
<td>28,7</td>
<td>29,7</td>
<td>29,7</td>
</tr>
<tr>
<td>5896</td>
<td>52,7</td>
<td>54,7</td>
<td>54,1</td>
<td>57,0</td>
<td>57,7</td>
<td>57,2</td>
<td>57,3</td>
<td>59,2</td>
<td>59,6</td>
<td>62,2</td>
</tr>
<tr>
<td>5897</td>
<td>*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>58,0</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5898</td>
<td>*</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>14,9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>5899</td>
<td>46,5</td>
<td>51,3</td>
<td>53,4</td>
<td>52,6</td>
<td>50,8</td>
<td>56,0</td>
<td>59,5</td>
<td>57,3</td>
<td>62,4</td>
<td>58,6</td>
</tr>
<tr>
<td>5900</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>42,4</td>
<td>—</td>
<td>46,4</td>
</tr>
<tr>
<td>5901</td>
<td>34,1</td>
<td>34,3</td>
<td>33,5</td>
<td>35,4</td>
<td>36,3</td>
<td>34,7</td>
<td>34,2</td>
<td>35,5</td>
<td>32,5</td>
<td>36,8</td>
</tr>
<tr>
<td>5902</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>29,1</td>
<td>29,9</td>
<td>31,0</td>
<td>34,8</td>
<td>33,6</td>
<td>—</td>
</tr>
<tr>
<td>5903</td>
<td>50,6</td>
<td>51,9</td>
<td>50,5</td>
<td>54,5</td>
<td>56,2</td>
<td>54,0</td>
<td>53,3</td>
<td>56,3</td>
<td>55,6</td>
<td>59,8</td>
</tr>
<tr>
<td>5904</td>
<td>27,2</td>
<td>31,4</td>
<td>35,8</td>
<td>29,8</td>
<td>25,2</td>
<td>34,4</td>
<td>39,6</td>
<td>33,1</td>
<td>40,2</td>
<td>30,2</td>
</tr>
<tr>
<td>5905</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>39,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>39,3</td>
<td>—</td>
</tr>
<tr>
<td>5906</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>39,3</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>39,3</td>
<td>—</td>
</tr>
<tr>
<td>5907</td>
<td>10,7</td>
<td>14,3</td>
<td>14,4</td>
<td>17,1</td>
<td>17,3</td>
<td>18,5</td>
<td>19,6</td>
<td>21,0</td>
<td>22,9</td>
<td>24,4</td>
</tr>
<tr>
<td>5908</td>
<td>51,5</td>
<td>55,2</td>
<td>66,5</td>
<td>56,7</td>
<td>55,6</td>
<td>58,8</td>
<td>61,0</td>
<td>60,1</td>
<td>63,3</td>
<td>61,6</td>
</tr>
<tr>
<td>5909</td>
<td>33,7</td>
<td>56,1</td>
<td>60,1</td>
<td>53,4</td>
<td>49,4</td>
<td>56,9</td>
<td>62,3</td>
<td>55,1</td>
<td>61,1</td>
<td>51,8</td>
</tr>
<tr>
<td>5910</td>
<td>56,7</td>
<td>60,5</td>
<td>59,6</td>
<td>64,6</td>
<td>66,0</td>
<td>65,9</td>
<td>65,3</td>
<td>69,4</td>
<td>69,6</td>
<td>74,1</td>
</tr>
</tbody>
</table>

* — zakrycie możliwe.

KRONIKA HISTORYCZNA

Michał Kamieński, 1879—1973

24 listopada minęło sto lat, jak w polskiej rodzinie ziemiańskiej osiadłej na Białorusi w guberni Mohylewskiej urodził się Michał Kamieński, przyszły astronom, profesor Uniwersytetu Warszawskiego, długoletni

W roku 1949, gdy Kamieński ukończył 70 lat życia, ukazała się jego pierwsza publikacja na temat badań nad periodycznością komety Halleya (Sprawozdanie P.A.U., t. 50, nr 6). Badania te prowadził dopóki starczyło mu sił. Głównym celem tych badań było skonfrontowanie obliczonych dat przejść komety Halleya przez peryhelium w dawnych epokach z datami pojawień się jasnych komet, utrwalonymi w niektórych starych kronikach, w Biblii i innych przekazach. Kamieński wykładał zezałożenia, że przynajmniej niektóre ze wzmiankowanych komet mogły być identyczne z kometą Halleya. Obliczenia wykazały, że rzeczywiście niektóre z nich należy utożsamiać z jedną z najjaśniejszych komet okresowych — Halleya. A ponieważ wzmianki kronikalizy związane były zawsze jakimś wydarzeniem historycznym, pozwala to na datowanie wydarzeń, stanowi więc idealny środek dla chronologii.

Metoda Kamieńskiego odbiega nieco od bardziej dokładnych sposobów obliczania orbity. Mając już do wglądu bardzo bogaty materiał dotyczący pojawień komety Halleya w okresie półtora tysiąca lat, Kamieński wykrył pewne cykle, które stały się pomocne przy wyprowadzeniu pełnej listy dat peryhelów, obejmujących ogółem 150 powrotów komety, w okresie od roku —9541 do 1910. Daty te nie są oczywiście definitywne, ale pozwalają już, w przypadku analizy którejś ze starych notatek kronikalizy, na wyeliminowanie jej z góry, ewentualnie za uznanie jej za możliwą relację o komecie Halleya.

Również dla badań chronologicznych Kamieński opracował metodę obliczania pozycji planet dla bardzo odległych epok, którą nazwał metodą cykliczną.

LUDWIK ZAJDLER

KALENDARZYNK ASTRONOMICZNY

Opracował G. Sitarski

Styczeń 1980 r.

Słońce

Ziemia w swym ruchu po orbicie okołosłonecznej znajduje się 3 stycznia o 16h najbliżej Słońca, a zatem Słońce będzie wówczas w perigeum, w odległości około 147 milionów km od Ziemi. Orbita Ziemi jest elipsą o bardzo małym mimośrodzie, czyli niewiele różni się od okręgu koła; różnica pomiędzy najmniejszą a największą odległością Ziemi od Słońca wynosi około 5 milionów km.

Dni stają się już coraz dłuższe. W Warszawie 1 stycznia Słońce wschodzi o 7h46m, zachodzi o 15h33m, a 31 stycznia wschodzi o 7h21m, zachodzi o 16h19m. W styczniu Słońce wstępuje w znak Wodnika.
Dane dla obserwatorów Słońca (na 13h czasu środk.-europ.)

<table>
<thead>
<tr>
<th>Data 1979</th>
<th>P</th>
<th>B_a</th>
<th>L_a</th>
<th>Data 1979</th>
<th>P</th>
<th>B_a</th>
<th>L_a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1</td>
<td>+2°19</td>
<td>-3°03</td>
<td>298°60</td>
<td>17 1</td>
<td>-5°48</td>
<td>-4°75</td>
<td>87°90</td>
</tr>
<tr>
<td>3 3</td>
<td>+1.22</td>
<td>-3.26</td>
<td>272.26</td>
<td>19 1</td>
<td>6.40</td>
<td>-4.94</td>
<td>61.57</td>
</tr>
<tr>
<td>5 5</td>
<td>+0.25</td>
<td>-3.48</td>
<td>245.92</td>
<td>21 1</td>
<td>7.32</td>
<td>-5.13</td>
<td>35.24</td>
</tr>
<tr>
<td>7 7</td>
<td>-0.72</td>
<td>-3.72</td>
<td>219.58</td>
<td>23 1</td>
<td>8.22</td>
<td>-5.31</td>
<td>8.90</td>
</tr>
<tr>
<td>9 9</td>
<td>-1.69</td>
<td>-3.93</td>
<td>193.24</td>
<td>25 1</td>
<td>9.10</td>
<td>-5.48</td>
<td>342.58</td>
</tr>
<tr>
<td>11 11</td>
<td>-2.64</td>
<td>-4.14</td>
<td>166.91</td>
<td>27 1</td>
<td>9.98</td>
<td>-5.65</td>
<td>316.24</td>
</tr>
<tr>
<td>13 13</td>
<td>-3.60</td>
<td>-4.35</td>
<td>140.58</td>
<td>29 1</td>
<td>10.82</td>
<td>-5.80</td>
<td>289.90</td>
</tr>
<tr>
<td>15 15</td>
<td>-4.54</td>
<td>-4.56</td>
<td>114.24</td>
<td>31 1</td>
<td>11.66</td>
<td>-5.96</td>
<td>263.58</td>
</tr>
</tbody>
</table>

P — kąt odchylenia osi obrotu Słońca mierzony od północnego wierzchołka tarczy;
B, L — heliograficzna szerokość i długość środka tarczy.
24d5hl9m — heliograficzna długość środka tarczy wynosi 0°.

Księżyc

Ciemne, bezksiężycowe noce będziemy mieli w drugiej połowie miesiąca, bowiem kolejność faz Księżyca jest w styczniu następująca: pełnia 2<3l0h, ostatnia kwadra 10d13h, nów 17d22h, pierwsza kwadra 24dl5h. Najdalej od Ziemi Księżyc znajdzie się 8, a najbliżej Ziemi 20 stycznia. W styczniu tarcza Księżyca zakryje dwie jasne gwiazdy — Regulusa i Aldebarana, a także planety: Jowisza, Saturna i Wenus oraz planetoidę Westę. Ze zjawisk tych tylko zakrycie Wenus widoczne będzie w Europie (ale przebiegać będzie w dzień!).

Planety i planetoidy

Nad zachodnim horyzontem błyszczą Wenus jako gwiazda Wieczorna —3.5 wielkości. Wieczorem też wschodzi Jowisz około —2 wielkości gwiazdowej, Mars zerowej wielkości i Saturn +1 wielkości. Pozostałe planety przebywają na niebie zbyt blisko Słońca i są praktycznie niewidoczne. Przez lunety możemy obserwować ciekawe zjawiska w układzie czterech najjaśniejszych księżyków Jowisza, a także możemy paszukiwać trzy planetoidy, wieczorem Ceres około 8.5 wielkości i Westę ok. 8 wielkości, a przez całą noc Juno 8.5 wielkości. Dla łatwiejszego odnalezienia podajemy współrzędné równikowe planetoid dla kilku dat.

<table>
<thead>
<tr>
<th>Data 1980</th>
<th>Ceres</th>
<th>Juno</th>
<th>Westa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>rekt.</td>
<td>dekl.</td>
<td>rekt.</td>
</tr>
<tr>
<td>1 1</td>
<td>0h46m0</td>
<td>-4°37'</td>
<td>7h32m2</td>
</tr>
<tr>
<td>11</td>
<td>0 52.9</td>
<td>-3 10</td>
<td>7 23.3</td>
</tr>
<tr>
<td>21</td>
<td>1 01.2</td>
<td>-1 37</td>
<td>7 14.7</td>
</tr>
<tr>
<td>31</td>
<td>1 01.8</td>
<td>-0 01</td>
<td>7 07.6</td>
</tr>
</tbody>
</table>
Meteory

Od 1 do 6 stycznia promieniują meteory z roju Kwadrantydów (maksimum aktywności przypada 4 stycznia). Radiant meteorów leży w gwiazdozbiorze Wolarza i ma współrzędne: rekt. 15h28m, dekl. +50°. W tym roku warunki obserwacji nie są dobre (Księżyc bliski pełni), ale rój należy do jednego z bogatszych.

* * *

2/3d Na tle tarczy Jowisza przechodzi księżyc 2 i jego cień. Obserwujemy koniec przejścia: cienia o 0h16m, a księżyca o 2h22m.

3/d Na tarczy Jowisza o 1h27m widoczny jest cień księżyca 3. Sam księżyca 3 przechodzi na tle tarczy od 2h9m do 5h35m. Do brzegu tarczy planety zbliża się także księżyca 1 i o 4h11m obserwujemy początek jego zaćmienia.

4/5d Po północy księżyca 1 i jego cień przechodzą na tle tarczy Jowisza. Cień pojawia się na tarczy planety o 1h33m, a księżyca 1 rozpoznaje przejście o 2h34m; cień kończy przejście o 3h49m, a księżyca o 4h49m.

5/6d O 1h58m obserwujemy koniec zakrycia 1 księżyca Jowisza przez tarczę planety (ukaże się on spoza prawego brzegu tarczy, patrząc przez lunetę odwracającą).

6/d Bliskie złączenie Księżyca z Regulusem, gwiazdą pierwszej wielkości w gwiazdozbiorze Lwa. Zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w Południowej Ameryce oraz w południowej części Oceanu Spokojnego i Atlantyckiego.

7d O 5h Księżyca znajdzie się w bliskim złączeniu z Jowiszem; zakrycie planety przez tarczę Księżyca widoczne będzie w Ameryce Południowej, w środkowej części Atlantyku oraz w Zachodniej i Południowej Afryce. O 17h złączenie Księżyca z Marsem.

8d O 2h Saturn nieruchomy w rektascenjii. O 15h Saturn znajdzie się w bliskim złączeniu z Księżycem; zakrycie planety przez tarczę Księżyca widoczne będzie w Japonii, w północnej i środkowej części Pacyfiku oraz w północno-zachodniej części Południowej Ameryki.

9/10d Księżyca 2 i jego cień przechodzą na tle tarczy Jowisza. Cień pojawia się na tarczy planety o 23h58m, a księżyca 2 rozpoznaje przejście na jej tle o 1h54m; cień kończy przejście o 2h51m, a księżyca o 4h46m.

10/11d Od 1h51m do 5h24m po tarczy Jowisza wędruje plamka cienia jego 3 księżyca. O 5h43m obserwujemy początek przejścia samego księżyca 3, a o 6h5m początek zaćmienia księżyca 1.

11/12d O 23h48m obserwujemy koniec zakrycia 2 księżyca Jowisza przez tarczę planety. Nad ranem na tle tarczy przechodzi książęcy 1 wraz ze swym cieniem; cień rozpoznaje przejście o 3h26m, a księżyca o 4h21m, cien kończy przejście o 5h42m, a księżyca o 6h37m.

12/13d O 0h33m obserwujemy początek zaćmienia, a o 3h46m koniecz zakrycia 1 księżyca Jowisza.

13d O 5h planetoida Juno w przeciwwstawieniu ze Słońcem względem Ziemi, a o 7h Uran w złączeniu z Księżycom w odl. 5°.

13/14d Księżyca 1 i jego cień przechodzą na tle tarczy Jowisza. Obserwujemy koniec przejścia: cienia o 0h11m, księżyca 1 o 1h3m.
15d10h Neptun w złączeniu z Księżycem w odl. 4°.

16/17d Obserwujemy serię ciekawych zjawisk w układzie księżyków Jowisza. Księżyc 4 ukryty jest w cieniu planety i o 22h57m obserwujemy koniec jego zaćmienia: pojawi się on nagle w odległości nieco większej niż promień tarczy od jej lewego brzegu (w luncie odwracającej). Od tej chwili z dwóch stron tarczy planety zbliżają się do jej brzegów dwa księżyce: o 2h33m na tarczy pojawia się cień księżyca 2, a o 2h57m księżyce 4 kryje się za brzegiem tarczy (początek zakrycia). O 4h16m księżyce 2 dociera do brzegu tarczy i rozpoczyna przejście na jej tle, a o 5h26m cień tego księżyca kończy swoje przejście. O 6h46m nastąpi koniec zakrycia 4 księżyca, a dopiero o 7h48m koniec przejścia księżyca 2.

17d9h Mars nieruchomy w rektascensji.

18/19d Księżyc 2 ukryty jest w cieniu i za tarczą Jowisza. O 2h9m obserwujemy koniec zakrycia tego księżyca przez tarczę planety.

19/20d O 2h27m obserwujemy początek zaćmienia, a o 5h32m koniec zakrycia 1 księżyca Jowisza.

20d O 14h nastąpi bliskie złączenie Wenus z Księżycem; zakrycie planety przez tarczę Księżyca widoczne będzie na Północnym Atlantyku, w Europie, w Północnej Afryce i w Zachodniej Azji. O 24h10m Słońce wstępuje w znak Wodnika; jego długość ekliptyczna wynosi wówczas 300°.

20/21d Księżyc 1 i jego cień wędrują na tle tarczy Jowisza. O 23h48m na tarczy planety pojawia się cień księżyca 1, a sam księżyc rozpocznie przejście o 0h34m; koniec przejścia cienia obserwujemy o 2h44m, a księżyca 1 o 2h50m.

21d10h Górné złączenie Merkurego ze Słońcem.

21/22d Dwa księżyce Jowisza ukryte są za tarczą planety. O 23h59m obserwujemy koniec zakrycia księżyca 1, a o 2h23m księżyca 3.

24d21h Bliskie złączenie i zakrycie planetoidy Westy przez tarczę Księżyca.

24/25d O 3h42m na tarczy Jowisza pojawia się i widoczny jest aż do rana cień jego 4 księżyca.

25/26d O 0h14m obserwujemy początek zaćmienia, a o 4h26m koniec zakrycia 2 księżyca Jowisza.

26/27d O 4h20m obserwujemy początek zaćmienia 1 księżyca Jowisza.

27d6h Bliskie złączenie Księżyca z Aldebaranem, gwiazdą pierwszej wielkości w gwiazdozbiorze Byka; zakrycie gwiazdy przez tarczę Księżyca widoczne będzie w środkowej i północnej części Oceanu Spokojnego oraz w Północnej i Środkowej Ameryce.

27/28d Księżyca 1 wraz ze swym cieniem przechodzi na tle tarczy Jowisza. Cień rozpocznie przejście o 1h41m, a księżyca 1 o 2h13m; koniec przejścia cienia nastąpi o 3h57m, a księżyca 1 o 4h35m.

28/29d Dwa księżyce Jowisza ukryte są w cieniu, a potem za tarczą planety. O 22h49m nastąpi początek zaćmienia księżyca 1, a o 23h46m księżyca 3; koniec zakrycia księżyca 1 obserwujemy o 1h44m, a księżyca 3 dopiero o 5h47m.

29dWieczorem obserwujemy koniec przejścia cienia 1 księżyca (23h26m) i samego księżyca 1 (o 23h1m) na tle tarczy Jowisza.

31d10h Pluton nieruchomy w rektascensji.

Momenty wszystkich zjawisk podane są w czasie środkowo-europyjskim.
CONTENTS

S. R. Brzostkiewicz — Photography service in astronomy.

M. Zawilski — Occultation phenomena visible in Poland in the nearest six years (1980—1985).

Observations: Amateurs of astronomy in Paderborn — Ephemerides of occultations of stars by the Moon, given for Poland.

Historical Chronicle: Michał Kamiński.

Astronomical calendar.

СОДЕРЖАНИЕ

С. Р. Бжосткевич — Фотография служит астрономии.

М. Завильтский — Явления затмений в Польше в ближайшем шестилетии (1980—1985).

Наблюдения: Любители астрономии в Падерборне — Эфемериды покрытий звёзд Луны для Польши.

Историческая хроника: Михаил Каменицкий.

Астрономический календарь.

Trzecia strona okładki: Zdjęcie galaktyki NGC 1316 wykonane za pomocą 3,9 m teleskopu bez (u góry) i z użyciem (u dołu) specjalnej techniki fotografowania opisanej w poprzednim numerze Uranii przez T. Kwasta.

Czwarta strona okładki: Fotografia centralnej części Wielkiej Mgławicy w Andromedzie M 31 wykonana za pomocą 5 m teleskopu.

Drukarnia Związkowa — Zam. nr 5332/79 — J-3 — 3.300 egz.