Przejdź do treści

Nowe informacje na temat eksplodujących masywnych gwiazd

Wizja artystyczna supernowej

Naukowcy przeprowadzili symulację trzech supernowych związanych z zapadnięciem się jądra masywnej gwiazdy, wykorzystując do tego celu superkomputery znajdujące się w Australii.

Modele symulacyjne – dotyczące wybuchów gwiazd o masach równych odpowiednio 39, 20 i 18 mas Słońca – dostarczyły nowych informacji na temat eksplodujących masywnych gwiazd i nowej generacji detektorów fal grawitacyjnych.

Tego rodzaju supernowe są efektem wybuchu bardzo masywnych gwiazd pod koniec ich życia. Są jednymi z najbardziej świecących obiektów we Wszechświecie i miejscami narodzin czarnych dziur i gwiazd neutronowych. Wykryte fale grawitacyjne pochodzące od tych supernowych pomogą naukowcom lepiej zrozumieć astrofizykę czarnych dziur i gwiazd neutronowych.

Aby wykryć na falach grawitacyjnych supernową związaną z zapadającym się jądrem masywnej gwiazdy, naukowcy muszą przewidzieć, jak będzie wyglądał sygnał takiej fali grawitacyjnej. Do wykonania symulacji tych kosmicznych eksplozji używane są superkomputery, co pomoże zrozumieć skomplikowaną fizykę takich zjawisk. Pozwala to naukowcom przewidzieć, co zarejestrują detektory, gdy gwiazda wybuchnie, oraz jej obserwowalne właściwości.

Przeprowadzone symulacje trzech eksplodujących masywnych gwiazd śledziły działanie silnika supernowej przez długi czas – jest to ważne dla dokładnego prognozowania mas gwiazd neutronowych i obserwowalnej energii wybuchu.

Modele dwóch najmasywniejszych gwiazd wytwarzają eksplozje energetyczne zasilane przez neutrina, ale najmniejsza z trzech modelowanych gwiazd nie wybuchła. Gwiazdy, które nie eksplodują, emitują fale grawitacyjne o niższej amplitudzie, ale częstotliwość ich fal grawitacyjnych leży w najbardziej czułym zakresie detektorów tych fal.

Naukowcy po raz pierwszy pokazali, że rotacja gwiazdy zmienia zależność między częstotliwością fali grawitacyjnej a właściwościami nowo powstającej gwiazdy neutronowej.

Modele szybko wirujących gwiazd wykazały duże amplitudy fali grawitacyjnej, które sprawiłyby, że eksplodująca gwiazda byłaby wykrywalna z odległości prawie 6,5 miliona lat świetlnych przez detektory następnej generacji, takie jak teleskop Einsteina.

Opracowanie: Agnieszka Nowak

Więcej:
Scientists reveal new insights of exploding massive stars and future gravitational wave detectors

Three-dimensional core-collapse supernova simulations of massive and rotating progenitors

Źródło: OzGrav

Na ilustracji: Wizja artystyczna supernowej. Źródło: Pixabay

Reklama