Przejdź do treści

Polska Mapa Infrastruktury Badawczej - astronomia

Polska Mapa Infrastruktury Badawczej

Ministerstwo Nauki i Szkolnictwa Wyższego (MNiSW) ogłosiło Polską Mapę Infrastruktury Badawczej. Broszura ta zawiera opisy 70 najlepszych infrastruktur badawczych wybranych spośród nadesłanych zgłoszeń. Spośród nich 10% należy do astronomii.

2 października 2020 r. MNiSW  zaprezentowało broszurę, która zawiera opisy 70 najlepszych infrastruktur badawczych wybranych spośród nadesłanych zgłoszeń. Nabór wniosków o wpisanie infrastruktury badawczej na Polską Mapę Infrastruktury Badawczej został ogłoszony w czerwcu 2019 r. Wpłynęło wówczas aż 146 spełniających wymogi formalne wniosków, z których każdy został poddany ocenie merytorycznej przez Zespół doradczy do spraw Polskiej Mapy Infrastruktury Badawczej oraz dwóch ekspertów zewnętrznych – krajowego i zagranicznego. Łącznie w procesie oceny zgłoszonych infrastruktur badawczych wzięło udział blisko 160 recenzentów.

- Dla doskonałości badań naukowych kluczowe znaczenie mają dwa elementy – odpowiedni kapitał ludzki oraz nowoczesna infrastruktura badawcza. Ten drugi element jest podwójnie ważny, gdyż bez niego nie jest możliwe kształcenie na odpowiednim poziomie przyszłych kadr naukowych i naukowo-technicznych. Duże, strategiczne infrastruktury badawcze skupiają wokół siebie najlepszych badaczy oraz innowacyjne przedsiębiorstwa, co umożliwia rozwój gospodarczy oraz wzrost kapitału społecznego kraju. Posiadanie doskonałych laboratoriów, stosujących najwyższe standardy badań oraz kształcenia, stanowi zatem rozwojową konieczność dla każdego kraju. Polska Mapa Infrastruktury Badawczej jest narzędziem, które ma nam (administracji i środowisku naukowemu) ułatwić rozwój takich laboratoriów. – powiedział minister nauki i szkolnictwa wyższego Wojciech Murdzek.

Oceny wniosków dokonano według ustawowych kryteriów, z uwzględnieniem następujących wag:

  • unikatowość infrastruktury w skali krajowej i międzynarodowej – 20%;
  • potencjał instytucjonalny oraz kadrowy wnioskodawcy – 18%;
  • stopień zainteresowania infrastrukturą ze strony krajowego i międzynarodowego środowiska naukowego i przedsiębiorców – 15%;
  • zasadność kosztów związanych z infrastrukturą – 15%;
  • zgodność celów i założeń infrastruktury z krajowymi i międzynarodowymi politykami w zakresie badań naukowych, rozwoju i innowacji – 12%;
  • perspektywa powstania infrastruktury we współpracy międzynarodowej – 12%;
  • możliwość powstania infrastruktury w perspektywie krótko- i średniookresowej – 8%.

Końcową ocenę wniosków ustalono po zsumowaniu 60% oceny ważonej przyznanej przez Zespół doradczy oraz 40% średniej arytmetycznej ocen ważonych przyznanych przez ekspertów zewnętrznych.

Następnie Zespół doradczy przedłożył Ministrowi Nauki i Szkolnictwa Wyższego rekomendacje w sprawie wpisania 65 najwyżej ocenionych przedsięwzięć na Polską Mapę Infrastruktury Badawczej. Minister, przychylając się do rekomendacji Zespołu, podjął jednocześnie decyzję o umieszczeniu na Mapie 5 dodatkowych projektów, w odniesieniu do których istnieją międzynarodowe zobowiązania Rządu Rzeczypospolitej Polskiej. Te infrastruktury to:

  • CLARIN – Wspólne Zasoby Język i Infrastruktura Technologiczna,
  • Cyfrowa Infrastruktura Badawcza dla Humanistyki i Nauk o Sztuce DARIAH-PL,
  • FAIR – Ośrodek Badań Antyprotonami i Jonami,
  • Infrastruktura Obrazowania Biologicznego i Biomedycznego – Bio-Imaging Poland (BIPol),
  • POL-OPENSCREEN – Polska Platforma Infrastruktury Skriningowej dla Chemii Biologicznej.

Polska Mapa Infrastruktury Badawczej zawiera 70 przedsięwzięć podzielonych, wzorem klasyfikacji stosowanej przez Europejskie Forum Strategii ds. Infrastruktur Badawczych, według sześciu obszarów badań, tj.:

  • nauki techniczne i energetyka (14 projektów);
  • nauki o Ziemi i środowisku (5 projektów);
  • nauki biologiczno-medyczne i rolnicze (16 projektów);
  • nauki fizyczne i inżynieryjne (23 projekty);
  • nauki społeczne i humanistyczne (6 projektów)
  • cyfrowe infrastruktury badawcze (6 projektów).

Spośród infrastruktur badawczych wpisanych na Polską Mapę Infrastruktury Badawczej 40 stanowią infrastruktury krajowe, 30 z nich ma natomiast wymiar międzynarodowy. Projekty astronomiczne znalazły się w obszarze badań „Nauki fizyczne i inżynieryjne. Jest to aż 7 projektów na 23 w tym dziale i aż 10% spośród wszystkich zgłoszonych i przyjętych do realizacji. W kolejności alfabetycznej są to:  

  • Cherenkov Telescope Array (CTA)
  • Hyper-Kamiokande
  • POLFAR – Radiointerferometr o Niskiej Częstotliwości. Rozwój Systemu: LOFAR 2.0
  • Polski System Satelitarny UV – UVSat
  • Stacja Europejskiej Sieci Interferometrii Wielkobazowej (VLBI) na Uniwersytecie Mikołaja Kopernika w Toruniu
  • Vera C. Rubin Observatory (poprzednia nazwa: The Large Synoptic Survey Telescope)
  • Virgo – Obserwatorium Fal Grawitacyjnych

Cherenkov Telescope Array (CTA) - projekt z sukcesem zgłoszony na Mapę Drogową ESFRI m.in. przez Polskę, jest wielkim międzynarodowym projektem naukowym z dziedziny astrofizyki wysokich energii. Bazując na doświadczeniach obecnie działających obserwatoriów H.E.S.S., MAGIC i VERITAS, opracowano plany budowy CTA, pozwalające na zwiększenie czułości pomiarów o około rząd wielkości w znacznie szerszym niż dotychczas zakresie energii, rozciągającym się już od 20 gigaelektronowoltów i sięgającym do najwyższych obserwowanych energii promieniowania gamma rzędu 30 teraelektronowoltów. Wykorzystywaną w CTA zasadą pomiaru jest rejestracja przez sieć optycznych teleskopów promieniowania Czerenkowa atmosferycznych kaskad cząstek generowanych przez docierające do Ziemi kosmiczne fotony gamma. W takich sieciach mają być stosowane teleskopy trzech rozmiarów o średnicach zwierciadeł 4 m „małe teleskopy”, 12 m „średnie” oraz 23 m „duże”. Cała infrastruktura Cherenkov Telescope Array Observatory (CTAO) będzie się składała z dwóch obserwatoriów, pozwalających badać obiekty i zjawiska na całym niebie. Obserwatorium południowe zostanie utworzone na terenach ESO w Chile, a obserwatorium północne na wyspie La Palma w Hiszpanii. W skład infrastruktury wejdzie też centrala zarządzająca w Bolonii oraz centrum analizy danych w DESY Zeuten pod Berlinem. Chociaż w prace projektu CTA są zaangażowane zespoły naukowe i techniczne z ponad 30 państw świata i z pięciu kontynentów, to wiodącą w nim rolę odgrywają państwa europejskie. W Polsce w prace zaangażowanych jest 13 instytucji naukowych, które współpracują w ramach Polskiego Konsorcjum projektu „Cherenkov Telescope Array”.

Podmioty zaangażowane: 1. Uniwersytet Jagielloński w Krakowie – Wnioskodawca; 2. Centrum Astronomiczne im. Mikołaja Kopernika PAN; 3. Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego PAN; 4. Centrum Badań Kosmicznych PAN; 5. Uniwersytet Warszawski; 6. Uniwersytet Łódzki; 7. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie; 8. Uniwersytet Mikołaja Kopernika w Toruniu; 9. Uniwersytet Zielonogórski; 10. Narodowe Centrum Badań Jądrowych; 11. Politechnika Warszawska oraz 12. Uniwersytet w Białymstoku.

Hyper-Kamiokande będzie podziemnym wodnym detektorem wykorzystującym zjawisko Czerenkowa, dzięki czemu będzie można obserwować wytworzone przez neutrina cząstki naładowane oraz wyznaczać zarówno punkt ich powstania, jak i energie. Detektor będzie prawie 10-krotnie większy niż obecnie działający eksperyment Super-Kamiokande. Ogromne rozmiary zbiornika: wysokość 60 m i średnica 74 m, pozwolą na zgromadzenie w nim 258 tysięcy ton ultra-czystej wody i wykonywanie pomiarów z nie-spotykaną dotąd czułością. Jego charakterystyczną cechą jest prosta zasada działania, polegająca na rejestracji światła produkowanego w czystej wodzie przez ponad 20 tys. dużych jednorodnych oraz 5 tys. złożonych detektorów światła (fotopowielaczy) zainstalowanych na ścianach zbiornika. Detektor Hyper-Kamiokande będzie zbudowany w Japonii, w kopalni Tochibora, ok. 300 km od kompleksu badawczego J-PARC w Tokai, gdzie działa akcelerator pro-tonów służący do produkcji wiązki neutrin. Detektor będzie umieszczony na głębokości 650 m pod powierzchnią Ziemi dla osłony przed promieniowaniem kosmicznym, co w połączeniu z jego rozmiarami jest wyzwaniem stojącym przez fizykami i inżynierami. W eksperymencie zostanie wykorzystany także zestaw dwóch bliskich detektorów, który jest niezbędny do precyzyjnego określenia parametrów wiązki neutrin. Zmodernizowany zostanie obecny detektor bliski oraz powstanie nowy wodny detektor po-średni wykorzystujący, podobnie jak daleki detektor, promieniowanie Czerenkowa. Uruchomienie Hyper-Kamiokande jest planowane w drugiej połowie tej dekady.

Podmioty zaangażowane: 1. Narodowe Centrum Badań Jądrowych – Wnioskodawca; 2. Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie; 3. Instytut Fizyki Jądrowej im. Henryka Niewodniczańskiego PAN; 4. Politechnika Warszawska; 5. Uniwersytet Jagielloński w Krakowie; 6. Uniwersytet Śląski w Katowicach; 7. Uniwersytet Warszawski oraz 8. Uniwersytet Wrocławski.

POLFAR - przedmiotem projektu jest udział w rozwoju i użytkowaniu europejskiego interferometru radiowego LOw Frequency ARray (LO-FAR) – instrumentu pracującego w zakresie częstotliwości 10–240 MHz, składającego się z kilkudziesięciu stacji rozmieszczonych w zachodniej i środkowej Europie. Obecnie system tworzą 52 stacje zlokalizowane w różnych miejscach Europy. 38 stacji znajduje się w Niderlandach, 6 w Niemczech, 3 w Polsce, po jednej w Szwecji, Wielkiej Brytanii, Francji, Irlandii i na Łotwie. W Polsce trzech członków konsorcjum POLFARO – UWM, UJ i CBK PAN – wybudowało i obecnie zarządza stacjami LOFAR, odpowiednio: w okolicy Olsztyna (Bałdy), Krakowa (Łazy) i Poznania (Borówiec). Wszystkie europejskie stacje pracują wspólnie jako jeden instrument obserwacyjny skupiony w International LOFAR Telescope (ILT). LOFAR pozwala obecnie prowadzić badania w zakresie bardzo niskich częstotliwości, w zakresie widma elektromagnetycznego najsłabiej dotychczas zbadanego przez radioastronomów. W związku z sukcesem naukowym i organizacyjnym systemu LOFAR europejskie konsorcjum ILT, którego członkiem od 2015 r. jest również Polska, realizuje obecnie program dalszego rozwoju tego systemu – LOFAR 2.0. Głównym celem modernizacji będzie utrzymanie pozycji najlepszego na świecie wielkobazowego interferometru radiowego niskich częstotliwości przynajmniej przez najbliższą dekadę. Rozwój ten przede wszystkim ma na celu zwiększenie możliwości obserwacyjnych systemu, jak również znaczne ulepszenie procesu pozyskiwania i opracowania obserwacji radioastronomicznych.

Podmioty zaangażowane:1. Uniwersytet Warmińsko-Mazurski w Olsztynie – Wnioskodawca; 2. Uniwersytet Jagielloński w Krakowie; 3. Centrum Badań Kosmicznych PAN; 4. Instytut Chemii Bioorganicznej PAN – Poznańskie Centrum Superkomputerowo Sieciowe; 5. Uniwersytet Zielonogórski; 6. Uniwersytet Mikołaja Kopernika w Toruniu; 7. Centrum Astronomiczne im Mikołaja Kopernika PAN; 8. Uniwersytet Szczeciński; oraz 9. Uniwersytet Przyrodniczy we Wrocławiu.

Polski system satelitarny UV – UVSat to projekt, który umożliwi budowę polskimi siłami zaawansowanych technologicznie satelitów naukowych. Podstawowym celem proponowanego projektu jest zbadanie możliwości pozyskiwania danych astronomicznych w zakresie ultrafioletowym (UV) zarówno fotometrycznie, jak i spektroskopowo. Ultra-fiolet jest obszarem widmowym, w którym silnie promieniują gorące gwiazdy i akreujące materię obiekty zwarte, gwiazdowej lub galaktycznej natury. Określają one chemiczną ewolucję Wszechświata i stanowią najpotężniejsze źródła energii we Wszechświecie. Ich promieniowanie UV przewyższa znacz-nie promieniowanie widzialne, jednak wobec absorpcji atmosferycznej może być obserwowane tylko z kosmosu. Podstawowym celem praktycznym projektu jest wypracowanie polskiej specjalności w zakresie badań kosmicznych w oparciu o krajowy potencjał naukowy i przemysłowy, np. w zakresie podsystemów satelity: zasilania, termicznej kontroli, komputera pokładowego, pamięci pokładowej, orientacji satelity na orbicie (AOCS), optyki instrumentalnej, struktury mechanicznej, kontroli misji, czy segmentu naziemnego (Stacja Naziemna Kontroli Lotów).

Podmioty zaangażowane: 1. Centrum Astronomiczne im Mikołaja Kopernika PAN – Wnioskodawca; 2. Centrum Badań Kosmicznych PAN; 3. Creotech Instruments S.A.; 4. Uniwersytet Wrocławski.

Stacja Europejskiej Sieci Interferometrii Wielkobazowej (VLBI) na UMK posiada w pełni sterowany radioteleskop z paraboloidalnym lustrem o średnicy 32 metrów. Jego kriogeniczne, tj. chłodzone do temperatur rzędu kilkunastu kelwinów, a przez to super-czułe, systemy odbiorcze pracują w pięciu pasmach częstotliwościowych używanych w radioastronomii: 1.4, 5, 6, 12 i 22 GHz. Jest to jedna z największych infrastruktur do pro-wadzenia podstawowych badań naukowych w Polsce. Funkcjonowanie 32-metrowego radioteleskopu UMK w ramach Europejskiej Sieci VLBI (EVN) jest koniecznością wynikającą z fundamentalnego ograniczenia wszystkich radioteleskopów polegającego na tym, że – w przeciwieństwie do teleskopów optycznych – działając autonomicznie, nie są one w stanie dostarczać ostrych obrazów obiektów astronomicznych. Jest to bezpośrednia konsekwencja ich niewielkiej rozdzielczości kątowej, ta zaś wynika ze względnie niskiego stosunku średnicy lustra typowego radioteleskopu do długości odbieranych przezeń fal. Z reguły jest on rzędu około tysiąca, podczas gdy w największych teleskopach optycznych ów stosunek może osiągać rząd nawet kilkunastu milionów. Ten mankament radio-teleskopów można jednak usunąć poprzez łączenie ich w sieć tak, aby pary elementów owej sieci stały się interferometrami – stąd nazwa tej metody. Kątowa zdolność rozdzielcza całej sieci może wówczas sięgać nawet tysięcznych części sekundy kątowej. Taka rozdzielczość nie jest dostępna w żadnej innej technice obserwacyjnej współczesnej astronomii.

Podmioty zaangażowane: Uniwersytet Mikołaja Kopernika w Toruniu.

Vera C. Rubin Observatory to projekt, który zakłada budowę teleskopu o średnicy lustra 8,4 m i nowatorskiej konstrukcji, zdolnego do głębokich, szerokokątnych obserwacji synoptycznych całego nieba. Podstawowym celem projektu jest przeprowadzenie wielkiego przeglądu nieba – Legacy Survey of Space and Time (LSST). Pierwsze światło teleskopu spodziewane jest w 2021 roku. Obserwatorium jest zlokalizowane na górze Cerro Pachón w Chile. Celem Rubin Observatory jest przeprowadzenie 10-letniego przeglądu nieba, który obejmie 200 petabajtów obrazów i innych danych, dotyczących 37 mld gwiazd, galaktyk i obiektów Układu Słonecznego. Celem naukowym projektu jest odpowiedź na najbardziej palące pytania dotyczące struktury i ewolucji Wszechświata i znajdujących się w nim obiektów, w szczególności o naturę ciemnej materii i ciemnej energii; potencjalnie niebezpieczne asteroidy i odległe obszary Układu Słonecznego; zmienne obiekty astronomiczne; powstanie i strukturę Drogi Mlecznej.Rubin Observatory poprowadzi głębokie obserwacje na bezprecedensowo dużym obszarze nieba – podstawowy przegląd obejmie 18000. stopni kwadratowych; konstrukcja teleskopu umożliwi uzyskiwanie obrazów każdej części widocznego nieba co kilka nocy. Obserwacje prowadzone w tym trybie pozwolą na stworzenie katalogów astronomicznych tysiące razy większych niż kiedykolwiek wcześniej opracowane. Ru-bin Observatory i przegląd LSST jest projektem finansowanym przede wszystkim przez amerykańskie agencje (National Science Foundation – NSF, the Department of Energy – DOE), a także fundusze prywatne, ale z długą listą międzynarodowych udziałowców, na której znajduje się również Polska.

Podmioty zaangażowane: Narodowe Centrum Badań Jądrowych.

Virgo to wielkoskalowa infrastruktura badawcza, którą stanowi interferometryczny detektor fal grawitacyjnych o ramionach długości 3 km, zbudowany przez Centre National de la Recherche Scientifique (CNRS, Francja) oraz Istituto Nazionale di Fisica Nucleare (INFN, Włochy). Detektor znajduje się niedaleko Pizy we Włoszech. Koszt budowy wyniósł około 150 mln euro. Do udziału w projekcie i rozbudowie detektora dołączyły zespoły z innych krajów europejskich, między innymi z Polski. Virgo ściśle współpracuje z amerykańskim projektem LIGO, który dysponuje dwoma dużymi detektorami fal grawitacyjnych o ramionach długości 4 km. Na mocy porozumienia podpisanego pomiędzy projektami LIGO i Virgo analiza danych pro-wadzona jest przez wspólne dla obu projektów grupy badawcze. Członkowie Polskiego Konsorcjum Projektu Virgo mają zatem pełen dostęp do działającej w skali globalnej unikatowej infrastruktury LIGO-Virgo o wartości około 1 mld dolarów amerykańskich, co oznacza m.in. nielimitowany dostęp do danych zbieranych przez detektory. Obecnie projekt Virgo składa się z 28 grup badawczych, w których skład wchodzi ponad 500 naukowców z około 100 instytutów z Włoch, Francji, Niderlandów, Polski, Węgier, Hiszpanii, Niemiec i Belgii.

Podmioty zaangażowane: 1. Instytut Matematyczny PAN – Wnioskodawca; 2. Centrum Astronomiczne im. Mikołaja Kopernika PAN; 3. Narodowe Centrum Badań Jądrowych; 4. Uniwersytet w Białymstoku; 5. Uniwersytet Jagielloński w Krakowie; 6. Uniwersytet Warszawski; 7. Uniwersytet Zielonogórski oraz 8. Paweł Chuchmała Smart Instruments, Wrocław.

Pod linkiem można zapoznać się z całą broszurą Polskiej Mapy Infrastruktury Badawczej oraz przeczytać więcej informacji o projektach, w tym oferty i znaczenie tych projektów.

Źródło: MNiSW

Oprac. Paweł Z. Grochowalski