Wśród najbardziej ekstremalnych planet odkrytych poza granicami Układu Słonecznego są planety lawy: ogniste gorące światy, które krążą tak blisko swojej macierzystej gwiazdy, że niektóre ich regiony są prawdopodobnie oceanami stopionej lawy. Według zespołu naukowców atmosfera i cykl pogodowy co najmniej jednej takiej egzoplanety są jeszcze dziwniejsze: cechują się parowaniem i wytrącaniem się skał, naddźwiękowymi wiatrami szalejącymi z prędkością 5000 km/h i oceanem magmy głębokim na 100 km.
W badaniu opublikowanym w Monthly Notices of the Royal Astronomical Society naukowcy wykorzystują symulacje komputerowe do przewidywania warunków na K2-141b, egzoplanecie wielkości Ziemi, której powierzchnia, ocean i atmosfera złożone są z tych samych składników: skał. Przewidywane w ich analizach ekstremalne warunki pogodowe mogą z czasem trwale zmienić powierzchnię i atmosferę K2-141b.
Badanie to jest pierwszym pozwalającym przewidzieć warunki pogodowe na K2-141b, które może wykryć z odległości setek lat świetlnych za pomocą teleskopów nowej generacji, takich jak Kosmiczny Teleskop Jamesa Webba – powiedział główny autor pracy Giang Nguyen, doktorant z York University.
Zespół zanalizował wzór oświetlenia planety i odkrył, że około ⅔ K2-141b jest skierowane w stronę wiecznego światła dziennego – a nie jak w przypadku Ziemi jedną półkulą. K2-141b należy do podzbioru planet skalistych, które krążą bardzo blisko swojej gwiazdy. Ta bliskość utrzymuje egzoplanetę grawitacyjnie zablokowaną w miejscu, co oznacza, że zawsze ta sama strona jest zwrócona w kierunku gwiazdy.
Nocna strona doświadcza niskich temperatur poniżej -200o C. Temperatura na dziennej stronie egzoplanety szacowana jest na 3000o C. Jest ona wystarczająco gorąca, aby nie tylko stopić skały, ale także je odparować i ostatecznie stworzyć cienką atmosferę w niektórych obszarach.
Nasze odkrycie prawdopodobnie oznacza, że atmosfera rozciąga się nieco poza brzeg oceanu magmy, dzięki czemu łatwiej ją dostrzec za pomocą teleskopów kosmicznych – mówi Nicolas Cowan, profesor na Wydziale Nauk o Ziemi i Planetarności na Uniwersytecie McGill.
Co ciekawe, atmosfera odparowanych skał utworzona przez ekstremalne ciepło podlega wytrąceniu. Podobnie jak cykl wodny na Ziemi, w którym woda wyparowuje, unosi się do atmosfery, skrapla się i opada w postaci deszczu, tak samo dzieje się z sodem, tlenkiem krzemu i dwutlenkiem krzemu na K2-141b. Na Ziemi deszcz spływa z powrotem do oceanów, gdzie ponownie wyparowuje i cykl wodny się powtarza. Na K2-141b opary mineralne utworzone przez odparowaną skałę są porywane na zimną nocną stronę przez naddźwiękowe wiatry i „deszcz” skał z powrotem do oceanu magmy. Wynikające z tego prądy płyną z powrotem na gorącą dzienną stronę egzoplanety, gdzie skała ponownie wyparowuje.
Jednak cykl na K2-141b nie jest tak stabilny jak na Ziemi – twierdzą naukowcy. Powracający przepływ oceanu magmy na stronę dzienną jest powolny, w wyniku czego przewidują, że skład mineralny będzie się zmieniał w czasie – ostatecznie zmieni samą powierzchnię i atmosferę K2-141b.
Następnym krokiem będzie sprawdzenie, czy te przewidywania są poprawne – twierdzą naukowcy. Zespół teraz dysponuje danymi z Kosmicznego Teleskopu Spitzera, które powinny dać im pierwszy wgląd w temperaturę egzoplanety w ciągu dnia i nocy. Wraz z wystrzeleniem JWST będą mogli sprawdzić, czy atmosfera zachowuje się zgodnie z przewidywaniami.
Opracowanie:
Agnieszka Nowak
Więcej informacji:
Supersonic winds, rocky rains forecasted on lava planet
Źródło: McGill University
Na ilustracji: Wizja artystyczna lawowej planety K2-141b. Źródło: Julie Roussy, McGill Graphic Design i Getty Images.