Przejdź do treści

Teleskop Webba odkrył wodę wokół tajemniczej komety 238 P/Read z pasa planetoid

Na ilustracji porównano wygląd widma komety 238 P/Read i komety 109 P/Hartley 2. W widmach obu komet widać linie pary wodnej (H2O), ale w komecie Reada jest brak linii widmowych dwutlenku węgla (CO2). Widmo komety Reada zostało wykonane przez Kosmiczny Teleskop Jamesa Webba w 2022 roku, a komety Hartley 2 – przez misję satelitarną Deep Impact w 2010 roku. Źródło: NASA/ESA/CSA: Joseph Olmsted (STScI)

Po raz pierwszy w widmach z Teleskopu Webba astronomowie potwierdzili występowanie pary wodnej wokół komety z pasa planetoid. Dowodzi to, że woda z początków Układu Słonecznego mogła zachować się w postaci lodu w tym obszarze. Jednak temu odkryciu towarzyszy nowa zagadka – kometa 238 P/Read ma znacznie mniej dwutlenku węgla niż oczekuje się od obiektów z pasa planetoid.

Komety są rozpoznawalne od razu po ich warkoczach gazowych i pyłowych. Większość komet znajduje się w odległych obszarach naszego Układy Słonecznego i tylko okazyjnie zbliża się do Słońca. Są również komety poruszające się pomiędzy orbitami Marsa i Jowisza - w obrębie tzw. pasa planetoid, gdzie jest mnóstwo pozostałości (czyli planetoid/asteroid) po formowaniu się Układu Słonecznego.

Planetoidy w Układzie Słonecznym są zgrupowane głównie w pasie pomiędzy orbitami Marsa i Jowisza. Jest to torus z okruchami materii po formowaniu się Układu Słonecznego, który nazywa się głównym pasem planetoid (ang. Main Asteroid Belt). Jednak właściwszym, współczesnym określeniem jest dysk wokółgwiazdowy (ang. circumstellar disc).

Aktywność planetoid objawia się utratą masy w ten lub inny sposób. Jednak niektóre z nich wykazują specyficzną aktywność, która jest bliższa kometom – z widocznymi warkoczami i rozmytymi głowami. Sprawia to, że są od razu rozpoznawalne jako komety mimo, że poruszają się po orbitach jak inne planetoidy. Te obiekty astronomowie nazwali kometami pasa głównego (ang. Main Belt Comets – MCBs) i obecnie znamy ich 16.

Astronomowie skierowali Kosmiczny Teleskop Jamesa Webba na jeden z tych obiektów i po raz pierwszy zarejestrowali w widmie parę wodną. Wyniki tych obserwacji zostały opublikowane w prestiżowym „Nature” w artykule pt. „Spectroscopic identification of water emission from a main-belt comet.”.

Komety tracą materię, gdy zbliżają się do Słońca, którego większe ciepło powoduje sublimację lodu, czyli przejście materii ze stanu stałego do gazowego. Warkocze i głowy zawierają parę i pył. Astronomowie od dawna bezskutecznie poszukiwali pary wodnej w kometach z pasa planetoid. To odkrycie odpowiada na jedno pytanie, ale jednocześnie wywołuje kolejne - jak ta woda trafiła na Ziemię?

Kometa 238 P/Read ma średnicę około 600 metrów i została odkryta w 2005 roku przez astronoma Michela Reada jako jeden z pierwszych obiektów tego typu. Porusza się z okresem orbitalnym 5,63 lat po orbicie pomiędzy orbitami Marsa i Jowisza o peryhelium 2,36 j.a. i aphelium 3,96 j.a.

 

Zdjęcie komety 238 P/Read uzyskane przez Kosmiczny Teleskop Jamesa Webba (kamera NIRSpec) w dniu 8 września 2022 r oku. Na zdjęciu widać charakterystyczne struktury komety – rozmytą głowę i warkocz. Jest to więc dowód, że ten okruch kosmicznej materii o średnicy ~0,6 km,  krążący w pasie planetoid pomiędzy Marsem i Jowiszem (peryhelium – 2,36 j.a., aphelium – 3,96 j.a., okres orbitalny – 5,63 lat) nie jest asteroidą, lecz kometą. Źródło: NASA/ESA/CSA/Mike Kelley

Zdjęcie komety 238 P/Read uzyskane przez Kosmiczny Teleskop Jamesa Webba (kamera NIRSpec) w dniu 8 września 2022 r oku. Na zdjęciu widać charakterystyczne struktury komety – rozmytą głowę i warkocz. Jest to więc dowód, że ten okruch kosmicznej materii o średnicy ~0,6 km,  krążący w pasie planetoid pomiędzy Marsem i Jowiszem (peryhelium – 2,36 j.a., aphelium – 3,96 j.a., okres orbitalny – 5,63 lat) nie jest asteroidą, lecz kometą. Źródło: NASA/ESA/CSA/Mike Kelley


Astronomowie próbują poskładać w sensowną całość historię dystrybucji wody w Układzie Słonecznym i to, w jaki sposób tak dużo wody znalazło się na Ziemi. Naukowcy mają nadzieję, że zrozumienie pochodzenia wody w Układzie Słonecznym pomoże w znalezieniu zamieszkałych egzoplanet. Odkrycie pary wodnej wokół komety Reada to jest jeden z klocków do rozwikłania tej łamigłówki.

Jest to coś tajemniczego, ponieważ wiemy, że ten nasz zanurzony w wodzie i wypełniony życiem świat jest unikalny we Wszechświecie. Nie jesteśmy pewni jak ta woda trafiła tutaj - powiedziała Stefanie Miliam, która jest współautorką omawianej publikacji.
Zrozumienie historii występowania wody w Układzie Słonecznym może nam pomóc w zrozumieniu innych układów planetarnych i czy mogą się w nich znajdować planety podobne do Ziemi - dodała.

Przed odkryciem komet pasa planetoid astronomowie uważali, że wszystkie komety pochodzą z Pasa Kuipera lub Obłoku Oorta. W tych odległych i zamarzniętych obszarach Układu Słonecznego mógł zachować się pierwotny lód wodny z wczesnego okresu powstania Układu Słonecznego. Astronomowie również byli zainteresowani odpowiedzią na pytanie, czy pierwotny lód wodny mógł przetrwać w pasie planetoid, ale nie znaleźli przekonywującego dowodu - mimo że niektóre obiekty z tego pasa wydawały się podobne do komet.

Dopiero Kosmiczny Teleskop Jamesa Webba dostarczył ten dowód.

W przeszłości widzieliśmy obiekty z pasa planetoid ze wszystkimi cechami komet, ale dopiero dzięki dokładnym spektralnym danym z Teleskopu Webba możemy powiedzieć TAK, na pewno jest to lód wodny, który tworzy ten efekt. Dzięki obserwacjom Webba komety Reada obecnie możemy zademonstrować, że lód wodny z pierwotnego Układu Planetarnego może przetrwać w pasie planetoid - powiedział Michael Kelly, główny autor omawianej publikacji.

Astronomowie uważają za mało prawdopodobne, aby kometa Reada powstała w zewnętrznych obszarach Układu Słonecznego z innymi kometami i następnie została przechwycona. Jest to istotne, ponieważ oznacza, że pas planetoid zawiera własną, reprezentatywną próbkę wody.

Zasoby wody w Układzie Słonecznym i ich zmiany w czasie stanowią wielką łamigłówkę - wraz z Ziemią i jej potencjałem do rozwoju i utrzymania życia w jej centrum. Odkrycie wody w pasie planetoid należy traktować jako nowy klocek niezbędny do rozwiązania tej łamigłówki.

Jednak zdarzyła się również niespodzianka związana z obserwacjami komety Reada za pomocą Teleskopu Webba. Dane spektralne wykazały obecność pary wodnej, ale również brak dwutlenku węgla. Jest to nietypowe, ponieważ na ogół komety zawierają około 10% zamarzniętego CO2.

Astronomowie sugerują dwa wyjaśnienia braku dwutlenku węgla w widmie podczerwonym komety Reada. Kometa mogła powstać z typową zawartością CO2, ale następnie go utracić. Dwutlenek węgla przez kilka miliardów lat mógł już wysublimować z komety Reada pod wpływem ciepła pochodzącego od Słońca, ponieważ dwutlenek węgla jest bardziej lotny i może być łatwiej tracony niż para wodna. Inna możliwość jest taka, że kometa Reada powstała bez zawartości CO2 w cieplejszej części pasa planetoid.

Kolejnym krokiem w badaniach komet z pasa planetoid będzie porównanie właściwości komety 238 P/Read z innymi kometami spośród 16 znanych obiektów tego typu.
Te obiekty w pasie planetoid są małe i słabe, i za pomocą Teleskopu Webba ostatecznie zobaczymy o co chodzi z nimi i wyciągniemy wnioski. Czy inne komety z pasa planetoid również nie zawierają dwutlenku węgla? Każda z odpowiedzi będzie ekscytująca. - powiedziała współautorka publikacji Heidi Hammel.

 

 

Wizja artystyczna komety 238 P/Read poruszającej się w pasie planetoid. Widać zjawisko sublimacji -zamarznięta woda paruje, gdy kometa zbliża się do Słońca w swoim ruchu orbitalnym pomiędzy Marsem i Jowiszem (peryhelium – 2,36 j.a., aphelium – 3,96 j.a., okres orbitalny – 5,63 lat) . Źródło: NASA/ESA

Wizja artystyczna komety 238 P/Read poruszającej się w pasie planetoid. Widać zjawisko sublimacji -zamarznięta woda paruje, gdy kometa zbliża się do Słońca w swoim ruchu orbitalnym pomiędzy Marsem i Jowiszem (peryhelium – 2,36 j.a., aphelium – 3,96 j.a., okres orbitalny – 5,63 lat) . Źródło: NASA/ESA

 


Więcej informacji:

NASA’s Webb Finds Water, and a New Mystery, in Rare Main Belt Comet

JWST Finds a Comet Still Holding Onto Water in the Main Asteroid Belt

Publikacja naukowa w Nature:
Spectroscopic identification of water emission from a main-belt comet


Źródło: NASA, ESA, CSA, M. Kelley (University of Maryland)

Opracowanie: Ryszard Biernikowicz


Na ilustracji porównano wygląd widma komety 238 P/Read i komety 109 P/Hartley 2. W widmach obu komet widać linie pary wodnej (H2O), ale w komecie Reada jest brak linii widmowych dwutlenku węgla (CO2). Widmo komety Reada zostało wykonane przez Kosmiczny Teleskop Jamesa Webba w 2022 roku, a komety Hartley 2 – przez misję satelitarną Deep Impact w 2010 roku. Źródło: NASA/ESA/CSA: Joseph Olmsted (STScI)
 

Reklama