Przejdź do treści

Modelowanie wnętrza gwiazd neutronowych

img

Ulepszenia modelu wnętrza gwiazdy neutronowej sprawiają, że ma on zastosowanie do łączących się gwiazd neutronowych.

Astrofizycy opracowali ulepszony model wewnętrznej struktury gwiazd neutronowych, który dobrze zgadza się z danymi obserwacyjnymi. W przeciwieństwie do poprzednich modeli można go rozszerzyć, aby rozważyć, co się stanie, gdy dwie gwiazdy neutronowe się połączą.

Zapadnięte pozostałości olbrzymich gwiazd – gwiazdy neutronowe – to fascynujące obiekty. Mają zaledwie 20-30 km średnicy ale są prawie 400 000 – 600 000 razy masywniejsze niż Ziemia, co czyni je niesamowicie gęstymi obiektami.

Gwiazdy neutronowe nie są jednorodnymi skupiskami neutronów, mają raczej cebulową strukturę. Teoretycy zajęli się modelowaniem tej wewnętrznej struktury w oparciu o mechanikę kwantową i dane obserwacyjne.

Wcześniej naukowcy opracowali model zawierający trzy warstwy: zewnętrzną warstwę zbudowaną głównie z neutronów, wewnętrzne jądro złożone z kwarków – budulców neutronów – i region przejściowy między tymi dwiema warstwami.

Teraz zespół posunął ten model o krok dalej, używając bardziej ogólnego równania do opisania warstwy zewnętrznej, która składa się z około 97% neutronów i 3% protonów i elektronów.

Ulepszony model dobrze zgadza się z uzyskanymi dotychczas danymi obserwacyjnymi. Na przykład przewiduje, że maksymalna masa gwiazdy neutronowej może wynieść 2,35 masy Słońca, co jest bliskie masie największej dotychczas obserwowanej gwiazdy neutronowej – powstałej z połączenia się dwóch gwiazd neutronowych, z których w 2017 r. zaobserwowano fale grawitacyjne.

Wkrótce przewidywany jest prawdziwy test modelu. Teleskop NICER wykonuje obserwacje rentgenowskie, aby zmierzyć rozmiary gwiazd neutronowych o znanych masach. Jego pomiary potwierdzą lub obalą model zespołu.

Ten ogólny charakter modelu sprawia, że ma on zastosowanie nie tylko do pojedynczych gwiazd neutronowych, ale także do dwóch połączonych obiektów tej klasy. Stare równanie stanu dotyczyło tylko temperatury zera absolutnego. Działa to jedynie dla pojedynczych gwiazd neutronowych, ponieważ są one bardzo zimne, ale fuzja pary gwiazd generuje dużo ciepła, dlatego naukowcy wprowadzili równanie stanu, które może poradzić sobie z różnymi temperaturami. Zespół używa go teraz do modelowania tych połączeń i do uzyskiwania prognoz dotyczących fal grawitacyjnych, które one wygenerują.

Opracowanie:
Agnieszka Nowak

Więcej:
Modeling the insides of a neutron star

Źródło: RIKEN