Portal Sky&Telescope donosi o badaniach w zakresie zamieszkiwalności odległych planet pozasłonecznych. Zależy ona od wielu czynników - jednym z nich jest aktywność ich macierzystych gwiazd. Które z nich są silnie rozbłyskowe? Odpowiedzi na to pytanie może nam udzielić Kosmiczny Teleskop Keplera.
Dlaczego gwiazdy wykazują rozbłyski? Nasza obecna wiedza w tym zakresie opiera się głównie na obserwacjach jedynej gwiazdy, która znajduje się na tyle blisko, by można ją było szczegółowo zbadać - Słońca. Ale opieranie nauki na próbce złożonej z jednego tylko obiektu nastręcza wiele wątpliwości. Musimy przede wszystkim umieć ocenić, które wnioski wyciągane z takich badań są unikalne dla Słońca (lub gwiazd podobnych do Słońca), a które odnoszą się również do innych typów gwiazd.
Na bazie obserwacji Słońca i modelowania jego fizyki astronomowie doszli do wniosku, że gwiezdne rozbłyski powstają w wyniku rekoneksji, czyli zmiany i ponownego łączenia się linii pola magnetycznego w zewnętrznej atmosferze gwiazdy, koronie. Uważa się, że aktywność magnetyczna gwiazd jest rezultatem występowania wielkoskalowego dynama magnetycznego, wywoływanego ruchami w strefie konwekcyjnej gwiazdy.
Aby jednak sprawdzić, na ile ten ogólny obraz fizyki gwiazd jest prawdziwy dla wszystkich gwiazd, trzeba najpierw dowiedzieć się więcej na temat typów i klasyfikacji gwiazdowych rozbłysków. Ciekawe jest na przykład to, jakie właściwości gwiazd są silnie skorelowane z aktywnością. Zespół naukowców pod kierownictwem Toma Van Doorsselaere z Leuven w Belgii wykorzystał w tym celu największą jak dotąd próbkę gwiazd rozbłyskowych zaobserwowanych przez Teleskop Keplera.
Naukowcy stworzyli specjalny algorytm, który w sposób zautomatyzowany analizował właściwości gwiazd w oparciu o ich krzywe zmian blasku. Zbadano próbkę złożoną z 16 850 rozbłysków zaobserwowanych dla aż 6 662 gwiazd. Dane te zbadano następnie pod kątem zależności częstości pojawiania się flar, ich czasu trwania, energii i amplitud od typu spektralnego gwiazd i ich okresów rotacji. Autorzy badań mają teraz w planie rozszerzenie algorytmu detekcji flar na jeszcze większą próbkę danych z Keplera.
Diagram HR dla gwiazd rozbłyskowych zaobserwowanych przez Teleskop Keplera: ciąg główny (kolor żółty), olbrzymy (czerwony) i gwiazdy typu widmowego A (zielony). Źródło: Van Doorsselaere et al. 2017
Badania te doprowadziły do następujących wniosków:
- Gwiazdy rozbłyskowe stanowią około 3.5% całej próbki wyjściowej
- Aktywność taką wykazują aż 24 gwiazdy typu widmowego A. To ciekawe, bowiem nie uważa się, by mogły one mieć zewnętrzną strefę konwekcyjną - taką, jaka umożliwia działanie dynama magnetycznego. Jednak wszystko wskazuje na to, że także te gwiazdy mogą wykazywać silną aktywność magnetyczną
- Gwiazdy rozbłyskowe generalnie należą do wszystkich typów widmowych
- Większość gwiazd rozbłyskowych z próbki to gwiazdy ciągu głównego, ale jest wśród nich także 653 olbrzymów. To kolejny dość zaskakujący wynik - naukowcy sądzili, że podobnie jak w przypadku gwiazd typu A nie mają one silnych pól magnetycznych, bowiem z czasem osłabia je ich rosnący rozmiar i postępujące spowolnienie rotacji
- Szybko obracające się wokół własnej osi gwiazdy są bardziej podatne na rozbłyski, mają też tendencję do wykazywania bardziej energetycznych i częstszych flar.
Czytaj więcej:
- Oryginalna publikacja - Tom Van Doorsselaere et al.
- The Flaring Activity of M Dwarfs in the Kepler Field
- The Kepler Catalog of Stellar Flares
- A Study of Variability in the Frequency Distributions of the Superflares of G-type Stars Observed by the Kepler Mission
Źródło: Sky&Telescope
Zdjęcie: Artist’s rendering of a flaring dwarf star.
Źródło: NASA’s Goddard Space Flight Center/S. Wiessinger