Zespół, w skład którego weszli astronomowie z Warszawy, Krakowa i Torunia korzystający z obserwatorium H.E.S.S. w Namibii, odkrył niezwykle silne promieniowanie gamma pochodzące z martwej gwiazdy zwanej pulsarem. Energia fotonów tego promieniowania sięga 20 teraelektronowoltów, czyli mniej więcej dziesięć bilionów razy więcej niż energia fotonów światła widzialnego. Obserwacja ta jest trudna do pogodzenia z teorią powstawania promieniowania gamma wysokich energii w pulsarach.
Pulsary to pozostałości po gwiazdach, które eksplodowały spektakularnie jako supernowe. Wybuchy supernowych pozostawiają po sobie małą martwą gwiazdę o średnicy zaledwie około 20 kilometrów, bardzo szybko rotującą i obdarzoną ogromnym polem magnetycznym. Te martwe gwiazdy są prawie całkowicie zbudowane z neutronów i są nadzwyczaj gęste. Wystarczy wspomnieć, że łyżeczka ich materii ma masę ponad pięciu miliardów ton, czyli około 900 razy większą niż masa Wielkiej Piramidy w Gizie.
Pulsary emitują obracające się wiązki promieniowania elektromagnetycznego, podobnie jak kosmiczne latarnie morskie. Jeśli ich wiązka omiata Układ Słoneczny, obserwujemy błyski promieniowania w regularnych odstępach czasu. Te błyski, nazywane też pulsami promieniowania, mogą występować w różnych zakresach energii widma elektromagnetycznego. Naukowcy uważają, że źródłem tego promieniowania są szybkie elektrony, powstające i przyspieszane w magnetosferze pulsara w trakcie podróży ku jej peryferiom. Magnetosfera składa się z plazmy i pól elektromagnetycznych otaczających gwiazdę i obracających się razem z nią.
„Podczas swojej podróży na zewnątrz elektrony zyskują energię i uwalniają ją w postaci obserwowanych wiązek promieniowania", wyjaśnia prof. Bronisław Rudak z Centrum Astronomicznego im. Mikołaja Kopernika (CAMK PAN), współautor publikacji.
Pulsar Vela, znajdujący się na południowym niebie w gwiazdozbiorze Żagla, jest najjaśniejszym pulsarem w paśmie radiowym widma elektromagnetycznego i najjaśniejszym stałym źródłem kosmicznego promieniowania gamma w zakresie gigaelektronowoltów (GeV). Obraca się około jedenastu razy na sekundę. W zakresie energii powyżej kilku GeV jego promieniowanie nagle zanika, prawdopodobnie dlatego, że elektrony docierają do końca magnetosfery pulsara i z niej uciekają.
To jednak nie koniec historii. Dzięki długotrwałym obserwacjom z użyciem teleskopów H.E.S.S. odkryto teraz nowy składnik promieniowania w zakresie jeszcze wyższych energii, sięgających kilkudziesięciu teraelektronowoltów (TeV).
„To jest promieniowanie około 200 razy bardziej energetyczne niż jakiekolwiek wcześniej zarejestrowane z tego obiektu", mówi współautor prof. Christo Venter z Uniwersytetu Północno-Zachodniego w Republice Południowej Afryki.
Ten bardzo wysokoenergetyczny składnik promieniowania pojawia się w tych samych fazach co składnik obserwowany w zakresie GeV. Jednakże, aby osiągnąć tak wysokie energie, elektrony muszą podróżować poza granicę magnetosfery, a fazy pulsów powinny pozostać nienaruszone.
Otrzymany wynik kwestionuje naszą wcześniejszą wiedzę na temat pulsarów i wymaga ponownego przemyślenia i zbadania, jak działają te naturalne akceleratory materii. Przede wszystkim powszechnie znany, tradycyjny już wręcz schemat, według którego cząstki są przyspieszane wzdłuż linii pola magnetycznego wewnątrz lub nieco na zewnątrz magnetosfery, nie jest w stanie dobrze wyjaśnić otrzymanych teraz obserwacji. Może być tak, że zaobserwowano akurat przyspieszanie cząstek w tak zwanym procesie rekoneksji magnetycznej, poza cylindrem świetlnym, który w jakiś sposób zachowuje wzór ich rotacji. Jednak i ten scenariusz napotyka pewne trudności w wyjaśnieniu, jak powstaje promieniowanie o tak ekstremalnej energii.
Bez względu na poszukiwane nadal wyjaśnienie tego przypadku pulsar Vela, obok innych swoich wyjątkowych własności, oficjalnie stał się także pulsarem o najwyższej odkrytej do tej pory energii promieniowania gamma. To odkrycie otwiera nowe okno obserwacyjne do wykrywania innych pulsarów w zakresie kilku dziesiątków teraelektronowoltów za pomocą obecnych i przyszłych, bardziej czułych teleskopów gamma, dając przy tym nadzieję na lepsze zrozumienie procesów ekstremalnego przyspieszania cząstek w obiektach astrofizycznych o silnych polach magnetycznym.
Obserwatorium H.E.S.S. (High Energy Stereoscopic System) to sieć pięciu teleskopów Czerenkowa do obserwacji kosmicznego promieniowania gamma. Obserwatorium działa w ramach współpracy międzynarodowej. Teleskopy znajdują się w Namibii, niedaleko góry Gamsberg, w regionie znanym z doskonałych warunków do obserwacji astronomicznych. Cztery teleskopy H.E.S.S. zaczęły działać w latach 2002/2003, a znacznie większy piąty teleskop - H.E.S.S. II - od lipca 2012 roku. Dodanie piątego teleskopu, rozszerzyło zakres energetyczny rejestrowanego promieniowania w kierunku niższych energii oraz zwiększyło czułość sieci. W badaniach H.E.S.S. uczestniczy ponad 230 naukowców z 41 instytutów w 15 różnych krajach.
W skład zespołu H.E.S.S. wchodzą uczeni z pięciu polskich instytucji: Centrum Astronomicznego im. M. Kopernika PAN w Warszawie, Obserwatorium Astronomicznego Uniwersytetu Jagiellońskiego w Krakowie, Instytutu Fizyki Jądrowej im. Henryka Niewodniczańskiego w Krakowie, Obserwatorium Astronomicznego Uniwersytetu Warszawskiego oraz Instytutu Astronomii Uniwersytetu Mikołaja Kopernika w Toruniu.
Czytaj więcej:
- Publikacja: Discovery of a Radiation Component from the Vela Pulsar Reaching 20 Teraelectronvolts, The H.E.S.S. collaboration, Nature Astronomy, 2023
- H.E.S.S. usłyszał pulsara
Opracowanie: Elżbieta Kuligowska
Źródło: Uniwersytet Jagielloński
Na ilustracji: Naukowcy uważają, że energie fotonów światła podczerwonego z biegunów pulsara są wzmacniane do energii promieniowania gamma (niebieskiego) przez ultra-relatywistyczne elektrony.
Źródło: Science Communication Lab for DESY.